Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Прочностных характеристиках



держание углерода в них не должно превышать 0,15%, так как дальнейшее увеличение содержания углерода резко повышает склонность металла швов к образованию горячих трещин, а также существенно снижает пластичность и особенно ударную вязкость металла шва в эксплуатационных условиях. Необходимых прочностных характеристик металла шва достигают легированием его элементами, которые, повышая прочность, не снижают существенно его деформационную способность и ударную вязкость.

Штампуемость есть частный случай способности материала к пластической деформации или способность листового материала выдерживать пластическую деформацию в заданной конфигурации без нарушения сплошности и прочностных характеристик.

последовательности: 5(дс)< 5<д'< ^ис\ Отличительной особенностью условной диаграммы растяжения (рис. 1.10,а, б, в) деформационно-состаренных металлов является увеличение или появление на ней площадки текучести (^(дс)>//(ио)_ Отметим, что на диаграмме растяжения деформационно-состаренных сталей появляется зуб текучести, обусловленный различием "стартовых" напряжений и напряжений текучести. Различие параметров исходных диаграмм растяжения упрочнения состаренного и исходного металла показано на рис. 1.10,г. В зависимости от структуры металла возможны три вида а(е) для состаренного металла: 1) модули упрочнения для состаренного Е(дс) и исходного Е<ис> металлов равны Е<дс^= Е<ис>; 2) Е<дс)< Е(ис> и 3) Е<дс» Е<ис). Аналогично можно записать для степенного упрочнения. По-видимому наиболее вероятный случай, когда Е<дс» Е<ис>, поскольку, деформационное старение в большей степени повышает предел текучести. Это отмечается при испытаниях искусственно и естественно состаренных углеродистых и низколегированных сталей, проведенных нами и другими исследованиями. На рис. 1.11,а, б представлены зависимости предела текучести и временного сопротивления от степени предварительной деформации (СПД) ед, искусственно состаренных (при температуре Т = 250°С и времени выдержки тс=1ч.) сталей. Как и следовало ожидать увеличение СПД приводит к возрастанию прочностных характеристик сталей (рис. 1.11). Причем, более интенсивно возрастает предел текучести особенно для СтЗ. Отметим, что после искусственного старения на диаграмме растяжения (а - Е) наблюдается четко выраженная площадка текучести. Таким образом, с точки зрения прочностных показателей предварительное деформирование и старение металла не ухудшает эксплуатационные свойства сталей.

Режим азотирования для повышения прочностных характеристик — это выдержка при температурах ниже эвтектоидного превращения (до 591° С). Проникновение N приводит вначале к образованию азотистого феррита (область а на рис. 10.15). При дальнейшем насыщении N в феррите не растворяется и образуется нитрид железа у' (Fe4N). При достижении N предельного насыщения образуется вторая нит-ридная фаза s. Затем насыщение увеличивает концентрацию N в s-нитриде.

Надежность высоконапряженных пружин обеспечивается, кроме высоких прочностных характеристик, значительной пластичностью (3 >,. 5%, ф .> 20—25%), получаемой лишь в легированных сталях.

Скорость нарастания ползучести зависит от соотношения температур нагрева и рекристаллизации, а также от рабочих напряжений и прочностных характеристик металла. При этом чем более длительное время металл находится под нагрузкой, тем меньше величина напряжения, при котором произойдет его разрушение.

Как было указано, увеличение прочностных характеристик сплавов можно достигнуть либо холодной пластической деформацией (на-гартовкой), либо термической обработкой (рис. 18.3).

Дефекты, возникающие при изготовлении детали и эксплуатации, в значительной мере являются случайными. Это обстоятельство отчасти объясняет хорошо известный факт рассеивания прочностных характеристик деталей. Некоторые детали из одной и той же партии имеют высокую долговечность, а другие — очень низкую в результате оставшихся незамеченными первоначальных или возникших при эксплуатации новых дефектов.

Для сварных соединений ручной сварки характерно рассеяние прочностных характеристик в пределах одного и того же шва, изделия и партии изделий.

Актуальность критерия жесткости непрерывно возрастает, так как совершенствование материалов происходит главным образом в направлении повышения их прочностных характеристик, а модули упругости повышаются при этом значительно меньше мчи даже сохраняются постоянными, как, например, \> сталей.

Формирование сварного соединения при сварке плавлением сопровождается сложными диффузионными процессами в жидкой и твердой фазах, которые приводят к изменению химического состава в различных зонах, выделению или перераспределению примесей и легирующих элементов. При рассмотрении явления концентрационного переохлаждения уже указывалось на то, что состав кристаллизующейся твердой фазы будет отличен от состава исходного расплава. Вследствие этого по мере увеличения количества затвердевшего металла состав остающегося расплава, так же как и состав образующейся твердой фазы, будет постоянно изменяться. Поэтому при неизменности общего количества примесей в кристаллизующемся объеме сварочной ванны содержание их в различных участках шва неодинаково, что может приводить как к изменению прочностных характеристик, так и к снижению показателей свариваемости.

Необходимые толщину и пористость покрытий микротвэла можно рассчитать на основе предложенной Скоттом и Прадо-сом математической модели [15]. При известных прочностных характеристиках плотного запирающего силового слоя можно определить зависимость допустимой глубины выгорания ядерного топлива от толщины покрытия, пористости сердечника и буферного слоя с учетом анизотропного расширения и усадки покрытия, происходящих под действием потока быстрых нейтронов и термического отжига.

Для повышения технологической прочности сварных соединений (предотвращения появления горячих и холодных трещин) швы в оболочковых конструкциях выполняют мягкими присадками /31 — 34/. В качестве мягких присадков выбирают проволоки, обладающие высокой пластичностью, хотя и меньшей по сравнению с основным ме-таллом прочностью (рис. 2.4). Так, например, различие в прочностных характеристиках металла шва и основного металла сферических резервуаров, выполненных из титанового сплава ВТ5-1, достигает 30 % /32/, а при сварке труб из сплава ВТ22 и оболочек из сплава ВТ 14 сварной шов имеет более низкие (до 35 %) прочностные характеристики по отноше-

Для определения прочностных характеристик (предела текучести, предела прочности) сварных соединений различного рода конструкций (сосудов давления, газонефтепроводов, корпусов аппаратов химического оборудования и т.п.) из последних на стадии отладки технологии их изготовления вырезают образцы поперек сварного шва, форма и размеры которых оговариваются ГОСТ 6996-66. В том сл%'чае, когда соединения механически неоднородны, т.е. имеют в своем составе участки, металл которых обладает пониженным сопротивлением пластическому деформированию по сравнению с основным металлом конструкций, по-л^'ченных при испытании образцов, на натурные конструкции неизбежно приведет к созданию неверных представлений о их прочностных характеристиках. Это связано с тем, что на практике имеются существенные различия в схеме нагружения образцов и конструкций, относительных параметрах соединений и т.д. Кроме того, как отмечалось в работе /104/, большое влияние на получаемые результаты (стт, <зв) оказывает степень компактности поперечного сечения образцов А, = s / / (где * и t — размеры поперечного сечения). При этом отмечалось, что для получения сопоставимых результатов по <тт и (7В соединений конструкций и вырезаемых образцов необходимо соблюдение условий подобия по их нагру-жению (пластическому деформированию) и по относительным геометрическим параметрам (например, к).

В табл. 6.15 приведены сравнительные экспериментальные данные, полученные на углепластиках с1 двумя указанными типами связующих (полимерной матрицы). При изготовлении углепластиков были использованы волокна как с поверхностной обработ-кой, так н без нее. Поверхностная обработка углеродных волокон незначительно отражается на упругих и прочностных характеристиках углепластиков, изготовленных на связующем 5-211Б с предварительной его термообработкой. Возрастание этих характеристик происходить основном за счет обуглероживания матрицы. Анализ результатов исследования показывает, что предварительная термообработка полимерной матрицы положительно влияет на механические свойства однонаправленных углепластиков [50].

Для повышения технологической прочности сварных соединений (предотвращения появления горячих и холодных трещин) швы в оболочковых конструкциях выполняют мягкими присадками /31 — 34/. В качестве мягких присадков выбирают проволоки, обладающие высокой пластичностью, хотя и меньшей по сравнению с основным ме-таллом прочностью (рис. 2.4). Так, например, различие в прочностных характеристиках металла шва и основного металла сферических резервуаров, выполненных из титанового сплава ВТ5-1, достигает 30 % /32/, а при сварке труб из сплава ВТ22 и оболочек из сплава ВТ 14 сварной шов имеет более низкие (до 35 %) прочностные характеристики по отноше-

Для определения прочностных характеристик (предела текучести, предела прочности) сварных соединений различного рода конструкций (сосудов давления, газонефтепроводов, корпусов аппаратов химического оборудования и т.п.) из последних на стадии отладки технологии их изготовления вырезают образцы поперек сварного шва, форма и размеры которых оговариваются ГОСТ 6996-66. В том случае, когда соединения механически неоднородны, т.е. имеют в своем составе участки, металл которых обладает пониженным сопротивлением пластическому деформированию по сравнению с основным металлом конструкций, полученных при испытании образцов, на натурные конструкции неизбежно приведет к созданию неверных представлений о их прочностных характеристиках. Это связано с тем, что на практике имеются существенные различия в схеме нагружения образцов и конструкций, относительных параметрах соединений и т.д. Кроме того, как отмечалось в работе /1 04/, большое влияние на получаемые результаты (ат, ов) оказывает степень компактности поперечного сечения образцов "k = slt (где s и t — размеры поперечного сечения). При этом отмечалось, что для получения сопоставимых результатов по аг и ав соединений конструкций и вырезаемых образцов необходимо соблюдение условий подобия по их нагру-жению (пластическому деформированию) и по относительным геометрическим параметрам (например, к).

Таким образом, знакопеременное нагружение и термоциклиро-вание способствуют образованию и развитию диффузионных зон в переходном слое биметалла. Увеличение таких зон приводит к некоторому снижению циклической прочности биметалла, а с другой стороны, оно не сказывается на статических прочностных характеристиках биметалла. Эту склонность композиционного материала необходимо учитывать при разработке технологического процесса наплавки и сварки разнородных по структурному классу материалов. Выбор соединяемых материалов необходимо связывать с условиями дальнейшей эксплуатации такой композиции.

Если разница в прочностных характеристиках материала волокна и матрицы значительна, упрочнение последней начинается при меньшем объемном содержании волокон. Разумеется, степень упрочнения прежде всего зависит от прочности арматуры. Большую роль в данном случае играют нитевидные кристаллы и высокопрочные волокна, например проволока.

Неограниченность сырья для получения винипластов, простота его переработки, высокая химическая и достаточная температурная стойкость, возможность изготовления деталей теми же методами формо- и размерообра-зования, что и применяемые для проката (штамповкой, прессованием и сваркой), при сравнительно высоких прочностных характеристиках делают возможным применение винипластов в широких масштабах вместо проката.

Создание конструкционных материалов с заданными механическими свойствами, прогнозирование их прочностных характеристик, определение исходного и остаточного ресурсов конструкций и причин их разрушения невозможно без глубокого изучения структуры материалов на макро- и микроуровнях, без исследования распределения химического состава микровключений, динамики изменения структурных параметров в процессе нагружения материалов. Между структурой и механическими свойствами материалов имеется определенная взаимосвязь. Это позволяет судить об их прочностных характеристиках по результатам исследования структуры, не прибегая к измерениям механических параметров.

В табл. 6.15 приведены сравнительные экспериментальные данные, полученные на углепластиках с1 двумя указанными типами связующих (полимерной матрицы). При изготовлении углепластиков были использованы волокна как с поверхностной обработ-кой, так н без нее. Поверхностная обработка углеродных волокон незначительно отражается на упругих и прочностных характеристиках углепластиков, изготовленных на связующем 5-211Б с предварительной его термообработкой. Возрастание этих характеристик происходить основном за счет обуглероживания матрицы. Анализ результатов исследования показывает, что предварительная термообработка полимерной матрицы положительно влияет на механические свойства однонаправленных углепластиков [50].




Рекомендуем ознакомиться:
Промежуточными бункерами
Промежуточным перегревом
Промежуточной информации
Процентное отношение
Промежуточного коллектора
Промежуточного превращений
Промежуточном охладителе
Промежуточном теплообменнике
Проницаемость сердечника
Проникающего излучения
Проникновения излучения
Проникновение кислорода
Проплавления основного
Пропорциональным увеличением
Процентному содержанию
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки