Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Неразъемные подшипники



Высокий отпуск («низкий отжиг»). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру: сорбит, троостит, бейнит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—680°С (несколько ниже точки Л]). При нагреве до указанных температур происходят процессы распада мартенсита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения (см. рис. 118, в), высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.

Для получения высокой коэрцитивной силы стали должны иметь неравновесную структуру, обычно — мартенсит с высокой плотностью дефектов строения.

видно, структурные превращения могут привести и к удлинению и к сокращению образца. Наибольшей интенсивностью изменения размеров характеризуется алюминиевой сплав АЛ8, в закаленном состоянии имеющиц неравновесную структуру твердого раствора.

Роль легированного феррита в упрочнении стали возрастает, если сталь имеет неравновесную структуру (после закалки и отпуска) и содержит малое количество углерода. При повышении содержания в стали углерода роль легированного феррита в повышении прочности становится меньше и важное значение приобретают степень дисперсности, количество, форма и распределение фаз.

Высокий отпуск (для уменьшения твердости) х. После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру — сорбит, троостит, бей-нкт или мартенсит — и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—700 °С (несколько ниже точки Л,) в течение 3—15 ч и последующему охлаждению. При нагреве до указанных температур происходят процессы распада мартенсита и (или) бейнита, коагуляция и сфероидизация карбидов к в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. Высокий отпуск снижает твердость до требуемых значений и обеспечивает оптимальную для обработки резанием микроструктуру — феррит и смесь зернистого и пластинчатого перлита. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига (см. с. 194), когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения, высокий отпуск является единственной термической обработкой, позволяющей снизить их твердость.

Для получения высокой коэрцитивной силы стали должны иметь неравновесную структуру, обычно — мартенсит с высокой плотностью дефектов строения.

Закалка. Исторически сложившееся понятие «закалка» предполагает такую термообработку, при которой сталь приобретает неравновесную структуру, что прежде всего выражается в повышении твердости стали. В связи с этим к закалке можно отнести термообработку на сорбит, тростит, бейнит и мартенсит. Степень неравновесности продуктов закалки с увеличением скорости охлаждения повышается и возрастает от сорбита к мартенситу.

Закалка является основным видом упрочняющей термической обработки сталей и чугунов. При закалке детали нагревают выше критических температур, а затем охлаждают со скоростью, превышающей критическую. Под критической скоростью закалки понимают минимальную скорость охлаждения, обеспечивающую бездиффузионное превращение аустенита в мартенсит. Это позволяет получить неравновесную структуру с высокой твердостью, износостойкостью и прочностью. После закалки стали обычно следует отпуск, позволяющий снять термические напряжения и оптимизировать ее свойства.

Магнитнотвердые стали и сплавы предназначены для изготовления постоянных магнитов. Эти материалы трудно намагничиваются, но способы длительное время сохранять намагниченность, т.е. имеют болыыые значения коэрцитивной силы и остаточной индукции. Магнитнотвердые материалы должны иметь неравновесную структуру, например мартенсит с высокой плотностью дефектов строения.

Высокий отпуск («низкий отжиг»). После горячей механической обработки сталь чаще имеет мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру: сорбит, троостит, бейнит или мартенсит и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—680°С (несколько ниже точки Л^. При нагреве до указанных температур происходят процессы распада мартенсита и (или) бейнита, коагуляция карбидов в троостите и в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига, когда структура — обособленные участки феррита и перлита. Структурно Свободный феррит налипает на кромку инструмента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения (см. рис. 118, в), высокий отпуск является единственной термической обработкой, позволяющей понизить их твердость.

Для получения высокой коэрцитивной силы стали должны иметь неравновесную структуру, обычно — мартенсит с высокой плотностью дефектов строения.

Пересыщенный твердый раствор представляет собой неравновесную структуру с повышенным уровнем свободной энергии. Поэтому, как только подвижность атомов окажется достаточно большой, твердый раствор будет распадаться — начнется процесс старения.

Корпус и вкладыш могут быть неразъемными (рис. 16.9) или разъемными (см. рис. 16.2). Разъемный подшипник позволяет легко укладывать вал и ремонтировать подшипник путем повторных расточек вкладыша при его износе. Неразъемные подшипники дешевле. Вкладыши в этих подшипниках обычно запрессовывают в корпус.

Неразъемные подшипники выполняют в виде втулок, изготовляемых при небольших диаметрах (в среднем < 50 мм) целиком из антифрикционного материала (бронза, легкие сплавы, антифрикционный чугун), а при больших — из стали с заливкой пластичным антифрикционным материалом (баббит, свинцовая бронза).

По форме цапф подшипники скольжения делятся на цилиндрические, конические, шаровые и другие, а по конструкции — на неразъемные и разъемные. Неразъемные подшипники преимущественно применяют в приборах и для тихоходных, малонагруженных валов машин. Их можно выполнять непосредственно в станинах машин (рис. 284, а) и корпусах приборов (рис. 285) или в виде самостоятельных узлов (см. рис. 284, б).

В приборах в основном применяют неразъемные подшипники. Обычно втулки заформовывают (см. рис. 285, а) или запрессовывают

Неразъемные подшипники для валов с цилиндрическими цапфами регулируют путем радиального деформирования вкладышей (рис. 18.7). Для этого вкладыши выполняют с конической наружной поверхностью и при помощи гайки перемещают в осевом направлении в коническом отверстии корпуса. Вкладыш сжимается по трем образующим. Особенность конструкции подшипника заключается не только в тонком регулировании зазора, но и в создании в трех местах по окружности суживающихся зазоров, а следовательно, трех

Конструкции подшипников. Неразъемные подшипники (ГОСТ 11521—65) наиболее просты по конструкции; их отливают из серого чугуна. Растачивают обычно для работы непосредственно с валом (без вкладыша), но могут быть расточены и на большой диаметр для установки вкладыша — втулки 1 (рис. 3.142). Применяют для опор тихоходных валов с небольшой нагрузкой (сельскохозяйственные машины, транспортеры и др.). Разъемные подшипники * (рис. 3.143) имеют вкладыш из двух частей 3 и 2 (втулка, разрезанная по обра-

Цилиндрические опоры — подшипники — имеют цилиндрическую рабочую поверхность большой площади, значительный момент трения, надежно работают при больших нагрузках. Однако эти опоры из-за невозможности регулировать зазор между цапфой и подшипником не обеспечивают высокой точности центрирования вала. Конструкции цилиндрических опор скольжения показаны на рис. 27.17. В малонагруженных конструкциях применяют неразъемные подшипники в виде втулок, запрессованных в корпусе (а, б), или фланцев, прикрепленных к корпусу винтами (в). При действии радиальных сил R и небольших осевых сил Q используют шипы со сферической поверхностью, упирающейся в шарик или в стальную пластину (г). При действии зна-

Неразъемные подшипники применяют преимущественно в приборах и для тихоходных, малонагруженных валов силовых механизмов. Их можно выполнять как встроенными непосредственно в станину механизма (рис. 3.125, а), так и в виде самостоятельных узлов (рис. 3.125, б). Неразъемный (глухой) подшипник состоит из втулки (вкладыша) 2 (см. рис. 3.125), запрессованной в кор-

Существует очень много конструкций подшипников скольжения, которые подразделяются на два вида: неразъемные и разъемные. Неразъемный подшипник (рис. 13.1) состоит из корпуса и втулки, которая может быть неподвижно закреплена в корпусе подшипника или свободно заложена в него («плавающая втулка»). Неразъемные подшипники используют главным образом, в тихоходных машинах, приборах и т. д. Их основное преимущество — простота конструкции и низкая стоимость. Если корпус подшипника выполнен в виде фланца с опорной плоскостью, нормальной к оси вала, то такой подшипник называют фланцевым.

Неразъемные подшипники используются главным образом в тихоходных механизмах с ручным или механическим приводом. Конструктивные формы корпусов таких подшипников могут быть различными (см. рис. 40.1, а, б, в, г, д).

В конструкциях приборов и некоторых механизмов неразъемные подшипники могут быть выполнены в виде бронзовой или чугунной втулки, запрессованной в стенку корпуса.




Рекомендуем ознакомиться:
Некоторой совокупностью
Некоторое дополнительное
Некоторое небольшое
Некоторое переохлаждение
Некоторое предельное
Некоторое распределение
Некоторое улучшение
Некоторое усложнение
Некоторого интервала
Некоторого максимума
Называется сопротивление
Некоторого повышения
Некоторого улучшения
Некоторому изменению
Некоторому повышению
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки