Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Непрерывной регистрации



веществ с ОГ дизельных автомобилей, которые ранее во внимание не принимались. Методы испытаний токсичности дизелей и соответствующие нормы выбросов СО, С„Нт и NOX регламентированы в странах Европы Правилами 24 ЕЭК ООН. В СССР в основу стандарта токсичности автомобильных дизелей положен 13-ступенчатый калифорнийский испытательный цикл США (рис. 14). Испытания проводятся на моторном стенде с непрерывной регистрацией токсичных компонентов. Удельные выбросы г/кВт-ч определяются с учетом доли выбросов на каждой фазе испытаний.

Наиболее высокие требования предъявляются к полупромышленным испытаниям. При таких испытаниях в газоходах котла или опытной установки, имитирующих работу поверхностей нагрева котла, устанавливаются автономные поверхности (змеевики), регулирование работы которых ведется независимо от режима работы котла. Такие опытные поверхности обычно снабжаются регулирующими устройствами, позволяющими поддерживать температуру труб в определенных точках постоянной в течение всего периода испытаний. Испытания проводятся на опытных участках труб с фиксированным первоначальным состоянием, с непрерывной регистрацией температуры металла. Возможность применения результатов полупромышленных испытаний для установления кинетики высокотемпературной коррозии сталей рассматривается в гл. 4.

Методика усталостных испытаний, при которой регистрируется только число циклов до разрушения, не отвечает возросшим требованиям практики, не дает картины распространения усталостной трещины. Поэтому все чаще проводятся испытания с непрерывной регистрацией длины развивающейся трещины.

Создана установка и разработана методика для измерения длины трещины в процессе ее роста, основанные на пропускании через образец электрического тока и измерении электрического сопротивления и связанного с ним падения напряжения на участке образца с трещиной [65]. Это дает возможность контролировать трещину, зарождающуюся под износостойким покрытием, когда трещина не видна на поверхности. Общий вид установки для испытаний на усталостную трещиностойкость с непрерывной регистрацией длины усталостной трещины показан на фото 3.

Фото 3. Машина для усталостных испыташш с непрерывной регистрацией длины трещины методом электросопротивления.

Таким образом, сущность термического анализа заключается в изучении фазовых превращений, происходящих в системах или индивидуальных веществах, по сопровождающим эти превращения тепловым эффектам и по соответствующим температурам. Исследуемый образец подвергают постепенному нагреванию или охлаждению с непрерывной регистрацией температуры. В случае возникновения в веществе того или иного превращения изменяется скорость его нагревания или охлаждения за счет поглощения или выделения теплоты.

В настоящее время получила распространение методика исследования малоцикловой прочности с непрерывной регистрацией упругопластических деформаций, в частности поперечными электромеханическими деформометрами. При этом исследователь располагает записанной на двухкоординатном приборе диаграммой статического- растяжения и, следовательно, величиной предельной зарегистрированной деформации е/. Использование значения

Характеристики малоциклового разрушения конструкционного материала сильфонных компенсаторов изучались по методике, описанной в главе 5, на автоматических установках растяжения — сжатия с непрерывной регистрацией в процессе экспериментов диаграмм циклического деформирования.

Труднее объяснить часто наблюдаемые переходы между поведением I и II типов, вызванные изменениями температуры и приложенных напряжений. Наиболее вероятно, что такие переходы обусловлены многочисленными переменными параметрами, связанными с типом и морфологией оксида, механизмом ползучести и составом сплава. Например, можно ожидать, что толстые окалины, образующиеся при высоких температурах на стойких к окислению сплавах, особенно с высоким содержанием хрома или алюминия, будут повышать сопротивление ползучести на воздухе. Высказывались предположения, что изменение типа поведения с температурой отражает переход от высокотемпературного упрочнения, связанного с окалиной, к отрицательному воздействию адсорбции газов (особенно в вершинах трещин) при более низких температурах [23—27]. В то же время изменения температуры могут оказывать и косвенное влияние, изменяя преобладающий тип ползучести [1—6]. Это может быть причиной и переходов, вызванных изменением уровня проложенных напряжений [1—6]. Действительно, в состоянии очень высокого напряжения может отсутствовать стадия установившейся ползучести и тогда по существу мы наблюдаем влияние среды на режим ускоренной ползучести или на разрушение материала. В связи с этим следует заметить, что, к сожалению, большинство исследований коррозионной ползучести, а также и большинство технических испытаний на ползучесть [1—6] не сопровождаются непрерывной регистрацией деформации при определении времени до разрушения (длительной прочности).

Фундаментальным вопросом механики деформирования и разрушения является вопрос об уравнениях состояния, характеризующих связь между текущими значениями, напряжений а и деформаций е. Эта связь в общем случае оказывается достаточно сложной и зависящей от типа конструкционного материала, условий нагруже-ния (температура, скорость деформирования, время выдержки, физико-механические воздействия окружающей среды), характера напряженного состояния, возможных структурных изменений в материале в процессе деформирования и степени развития микро- и макроповреждений. В случае одноосного растяжения гладкого образца с непрерывной регистрацией диаграммы деформирования f (сг, ё) до момента разрушения сам факт разрушения фиксируется как конечная точка на диаграмме, хотя процессы микро- и макроразрушения могут начинаться существенно раньше.

Фундаментальным вопросом механики деформирования и разрушения является вопрос об уравнениях состояния, характеризующих связь между текущими значениями напряжений а и деформацией е [117, 245]. Эта связь в общем случае оказывается достаточно сложной и зависящей от типа конструкционного материала, условий нагружения (температура, скорость деформирования, время выдержки, физико-механические воздействия окружающей среды), характера напряженного состояния, возможных структурных изменений в материале в процессе деформирования и степени развития микро- и макроповреждений. В случае одноосного растяжения гладкого образца с непрерывной регистрацией диаграммы деформирования /(ст,е) до момента разрушения сам факт разрушения фиксируется как конечная точка на диаграмме, хотя процессы микро- и макроразрушения могут начинаться существенно раньше.

Остановимся теперь на основных результатах экспериментального изучения псевдоселективной коррози-и латуней. Для наблюдения за развитием процессов и установления временной зависимости скоростей 'перехода компонентов в коррозионную среду особенно удобным оказалось применение • у-спектуометрического метода с непрерывной регистрацией содержания в растворе каждого из -у-йзотопов [130]. Перед, исследов-анием оба компонента метят радиоактивными изотопами путем облучения-латунного образца потоком тепловых 'нейтронов или вводят готовый радиоизотоп при плавлении латуни. Коррозионные исследования проводят в ячейке, конструкция которой позволяет непрерывно перемещать рабочий раствор вдоль" у~чУвствительног° сцинтйляционного датчика. По нарастанию радиоактивности раствора вычисляют парциальные скорости окисления компонентов и ко-эффлциент селективности Zzn(t).

Методика исследования характеристик сопротивления деформированию и разрушению металла труб при малоцикловом нагру-жении. В настоящее время исследование малоцикловых характеристик конструкционных металлов проводится по разработанной методике с использованием специальных средств и аппаратуры [114, 234]. Широкое применение получает серийно выпускаемая автоматическая испытательная установка типа УМЭ-10Т, обеспечивающая нагружение образца в требуемом режиме (мягкое, жесткое, асимметрия). Испытания проводятся в условиях растяжения — сжатия при непрерывной регистрации параметров нагру-жения и деформирования. Установка имеет электромеханический привод с устройством выборки зазоров в винтовой паре, пять порядков скоростей перемещения активного захвата (от 0,005 до 100 мм/мин), возможность реверсирования с помощью системы автоматики двигателя электропривода при достижении как заданного усилия, так и заданной деформации. Машина имеет электронно-механическое силоизмерение (от резистивных датчиков, наклеенных на упругий динамометр), снабжена деформометром, обеспечивающим измерение продольной абсолютной деформации рабочей длины образца ± 2 мм. В необходимых случаях машина укомплектовывается деформометром для измерения поперечных деформаций. Усиленные сигналы (до 1000 : 1) регистрируются на диаграммном приборе барабанного типа в масштабе 500 X Х500 мм. Точность регистрации параметров нагружения ±1—2%. Максимальная частота нагружения порядка 5 циклов/мин.

Растяжение образца на разрывной машине в электрохимической ячейке выполняли с постоянной скоростью 34%/мин. При этом длина рабочей части, соприкасающейся с электролитом, оставалась неизменной и равной 10мм. Скорость анодного растворения определяли путем непрерывной регистрации силы тока между деформируемым образцом и аналогичным ему недеформируемым, играющим -роль катода в такой модели коррозионной пары, работа которой активируется деформацией. Для регистрации использовали самописец типа Н-373, который благодаря фотоэлектрическому усилителю постоянного тока отвечает -требованиям микроамперметра с нулевым сопротивлением. В опытах с разомкнутой цепью общий электродный потенциал деформируемого образца измеряли относительно 2-н. ртутно-сульфатного электрода сравнения. Регистрация выполнялась также самописцем Н-373, работавшим в режиме милливольтметра с высоким входным сопротивлением.

Растяжение образца на разрывной машине в электрохимической ячейке выполняли с постоянной скоростью 34%/мин. При этом длина рабочей части, соприкасающейся с электролитом, оставалась неизменной и равной 10 мм. Скорость анодного растворения определяли путем непрерывной регистрации силы тока между деформируемым образцом и аналогичным ему недеформируемым, играющим роль катода в такой модели коррозионной пары, работа которой активировалась деформацией. Для регистрации использовали самописец типа Н-373, который благодаря фотоэлектрическому усилителю постоянного тока, соответствовал микроамперметру с нулевым сопротивлением. В опытах с разомкнутой цепью общий электродный потенциал деформируемого образца измеряли относительно 2 н. ртутно-сульфатного электрода сравнения. Регистрацию выполняли также самописцем Н-373, работавшим в режиме милливольтметра с высоким входным co-f противлением.

стоянного тока типа МО-62. Для .непрерывной регистрации измерения температуры использовался осциллограф Н-700. Было установлено, что температура окружающей среды сохраняется до скорости 15—20 м/мин. Поэтому с некоторым температурным запасом для основных испытаний принята скорость 'скольжения 8,1 м/м.ин.

Методика исследования. Испытанию подвергались образцы технического железа (0,04% С) сечением 10 мм2. Теплосмены осуществлялись в температурном интервале 800 — 900° С с наложением постоянного растягивающего напряжения (о=0,5 — 4,0 кгс/мм2). Испытания проводились на установке ИМАШ-9-66, снабженной автоматической системой непрерывной регистрации деформации образца в процессе испытания .с точностью до 0,01 мм.

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76—78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса: числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос1 является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-

свидетельствует качественное отличие изменения импульса нагрузки под действием догоняющей волны разгрузки от расчетной: на экспериментальной кривой отсутствуют скачкообразные изменения интенсивности, предсказываемые расчетом [187]. Такие изменения не наблюдаются и на фронте разгрузки при непрерывной регистрации импульса нагрузки диэлектрическими датчиками. В связи с этим построение по результатам экспериментов зависимости амплитуды ударной волны от пути ее распространения в виде кривой с резкими скачками является субъективным, тем более что результаты имеют значительный разброс.

дующему. В материал детали вводят радиоактивный изотоп (активируют) путем облучения в реакторе, электролиза, введения радиоактивного вещества в расплавл. металл, диффузии, метода радиоактивных вставок-свидетелей и т. д. Активность продуктов износа регистрируется, что особенно удобно при циркуляц. системе смазки, когда продукты износа уносятся с маслом, и на этом пути или в непосредств. близости от маслопровода ставят счетчик. Преимущества М.а.м. при изучении износа заключаются в быстроте, высокой чувствительности (0,0001 мг), возможности непрерывной регистрации износа (счетчик соединяют с самописцем) и исследовании его в любых условиях и при любых режимах работы. В то время как при обычных испытаниях, напр., двигателя, детали измеряют перед испытанием и после него, для чего двигатель разбирают, при этом на испытание расходуется топливо, смазка.

Ip непрерывной регистрации исполь-

Например, при испытаниях тяжелонагруженных высших кинематических пар, работоспособность которых определяется контактно-гидродинамической задачей, для непрерывной регистрации весового износа деталей работающей машины (в частности, зубчатых передач), особенно при переходах от без-ызносных режимов к изнашиванию и заеданию, других методов нет. В то же время разработка контактно-гидродинамической теории смазки — первоочередной задачи науки в области передач зацеплением [1] — и использование ее в инженерном деле представляют наиболее эффективный путь к резкому повышению износостойкости и нагрузочной способности зубчатых передач, поскольку другие пути (конструкционные и технологические), в основном, уже исчерпаны [2]. В более общем плане обеспечение практически безызносных режимов следует рассматривать как основное средство увеличения срока службы деталей машин и времени эксплуатации всей машины да первого капитального ремонта. Однако существующие решения контактно-гидродинамической задачи [3, 4, 5], представ-

Решение этих задач стало возможным благодаря созданию комплексной методики и современного уникального экспериментального оборудования, в частности, ряда стендов с замкнутым силовым контуром для испытания зубчатых передач (рис. 1). Конструкция и система управления каждого такого стенда обеспечивают: возможность применения метода меченых атомов для непрерывной регистрации весового износа ис-




Рекомендуем ознакомиться:
Некоторых металлорежущих
Некоторых недостатков
Некоторых обстоятельствах
Некоторых особенностей
Называется предельным
Некоторых показателей
Некоторых постоянных
Некоторых предприятиях
Некоторых проблемах
Некоторых прокатных
Некоторых распространенных
Некоторых соединений
Некоторых специалистов
Некоторых суперсплавов
Некоторых титановых
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки