Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Локальное напряжение



В ПТЭ во избежание локального перегрева важной является равномерность потока охладителя. Были проведены специальные исследования пористых порошковых, волокнистых металлов и графита. У всех исследованных образцов существенной неоднородности проницаемости по большим участкам поверхности не обнаружено. Участки с повышенной или пониженной плотностью располагаются небольшими пятнами, отклонение пористости от средней на этих участках не превышает 4...11 % для пористых металлов из порошка и 10... 17 % для металлов из волокон. Отмеченное локальное изменение пористости вызывает и локальное отклонение расхода охладителя от средней величины, которое для металлов из порошков достигает 40 %, для металлов из волокон 50 %. Неоднородность пористости образцов вызывается неравномерностью плотности или толщины слоя порошка и волокон перед прессованием. Так, для волокнистых металлов применение операции предварительного вой-локования позволяет снизить максимальную величину отклонения пористости с 14...17 % до 10...15 %. Наилучшей однородностью проницаемости обладают пористые металлы из спресованных и спеченных сеток.

О влиянии остаточных напряжений на прочность материалов в научной литературе существуют самые противоречивые мнения. Одни авторы считают, что остаточные напряжения не могут оказывать значительное влияние на условия разрушения детали. Другие же, напротив, признают существенное влияние остаточных напряжений на надежность материала: их наличие увеличивает возможность его разрушения. Из всех суждений о значимости остаточных напряжений наиболее доказательными следует считать те, которые основываются на фактах. Последние свидетельствуют о том, что разрушения от остаточных напряжений бывают довольно часто. Известны случаи внезапных разрушений деталей машин без всяких дополнительных внешних воздействий. Неустойчивость напряженного состояния материала деталей, как бы заряженных энергией внутренних напряжений, приводит к тому, что иногда малейшее изменение этого состояния вызывает полное разрушение. Нередки случаи, когда причиной растрескивания поверхностей деталей являются локальное изменение температуры, царапина, легкое встряхивание. Так, из практики шарикоподшипниковых заводов известно, что шарики, подвергнутые пластической деформации, могут через некоторое время (несколько часов или суток) растрескиваться, при этом осколки разлетаются во все стороны.

Магнитооптические фотографические материалы изготовляют в виде тонких пленок с полосовой доменной структурой. Излучение объекта, сфокусированное на пленку, вызывает ее нагрев и локальное изменение направления этой структуры. При освещении пленки внешним источником воспроизводится изображение объекта в видимых лучах за счет дифракции на элементах, ее структуры. Подобные материалы неселективны, поскольку их действие основано на тепловых эффектах. ч

времени в какой-либо точке жидкости, т. е. характеризуют локальное изменение скорости; остальные три члена, стоящие в правых частях уравнений, характеризуют изменение скорости при переходе от точки к точке. Используя векторную форму записи, уравнения (4-11) — (4-13) можно написать в виде

Левая часть этого уравнения описывает локальное изменение удельной энтальпии, вызванное процессами теплопроводности, конвекции и молекулярной диффузии. Первый член правой части уравнения учитывает теплопроводность, второй— конвекцию и третий — молекулярную диффузию.

Согласно (15-8) локальное изменение энтальпии во .времени вызвано теплопроводностью, конвекцией и молекулярной диффузией. Принимая, что последняя осуществляется только концентрационной диффузией, т. е.

При рассмотрении распространения трещины при повторных нагружениях композитов следует учитывать три основных фактора: (1) процесс вязко упругого разрушения; (2) история роста трещины; (3) локальное изменение материала вблизи кончика трещины. Так как процессы медленного устойчивого роста трещины и усталости зависят от времени, их следует описывать процессом разрушения анизотропного вязкоупругого материала. Краткий обзор теоретических и экспериментальных исследований зависимости процесса разрушения от времени дан в работе [35].

При напряжениях, близких к верхнему пределу текучести, локальное изменение скорости (величины) деформации ведет к понижению нагрузки, необходимой для дальнейшего деформирования в этой области (обычно в области концентрации напряжений у головки образца). Вследствие этого нагрузка на образец снижается, а деформация сосредоточивается в узкой области. Процесс локального течения и спада нагрузки продолжается до тех пор, пока в результате упрочнения материала с ростом деформации и возрастания коэффициента концентрации на границе с прилегающим участком образца не будут созданы условия, благоприятные для распространения деформации на близлежащую область. Распространение волны деформации на всю длину образца восстанавливает его цилиндрическую форму — дальнейшее деформирование идет равномерно (модуль М—да/дк положителен) до достижения предела прочности ств, после чего локализация деформации с образованием шейки вновь нарушает устойчивость равномерного деформирования.

Практические наблюдения разрушений зубчатых передач и подшипников качения подтверждают указанные теоретические выводы. Значительно продвинулось решение контактной задачи термоупругости при одновременном изнашивании тел и действии теплоисточников в результате трения [7]. Показано существенное влияние на локальное изменение формы соприкасающихся тел, выпучивание материала в результате стесненного теплового расширения. При этом существенно перераспределяются напряжения, деформации, температуры, размеры исходной области контакта, интенсивность изнашивания. М.В. Коровчинским разработаны термоконтактные критерии, учитывающие тепловые и термоупругие явления. Они выражаются следующими формулами:

где dC/di — локальное изменение (во времени) концентрации субстанции; div Cw — конвективная составляющая переноса субстанции; j — вектор диффузионного (молекулярного) переноса — плотность потока субстанции; Jv — мощность источников и стокоБ субстанции.

Анализируя этот механизм, можно прийти к выводам, что в нестационарных условиях, по-видимому, решающую роль играет локальное изменение температуры потока в зоне т? = = 5 ... 30 за среднее время между следующими друг за другом возникновениями вихревых структур в данной точке.

располагаясь при этом на более близком расстоянии друг от друга, т. е. концентрируются вблизи вершины надреза, трещины и т. п. (рисунок 2.1.1, б). Плотность силовых линий вблизи вершины дефекта зависит от его формы. Вблизи вершины длинной острой трещины плотность силовых линий особенно велика. Таким образом, в зоне, непосредственно прилегающей к вершине трещины, величина силы, приходящейся на единицу площади, больше и, следовательно, выше локальное напряжение. Для идеально упругого твердого тела легко можно рассчитать возрастание напряжений вблизи вершины эллиптического отверстия. Аналогичные расчеты могут быть выполнены с достаточной степенью точности и для твердых тел, содержащих отверстия (надрезы, трещины) другой формы. Наиболее часто трещины возникают у вершин скоплений дислокаций вблизи каких-либо барьеров: включений избыточных фаз, границ зерен, двойников, сидячих дислокации и т. д. В непосредственной близости от барьера (рисунок 2.1.2, а) краевые дислокации в плоском скоплении могут под действием напряжений оказаться настолько тесно прижатыми друг к другу, что их экстраплоскости сливаются, а под ними образуется зародышевая микротрешина. Эта схема прямо предполагает необходимость некоторой пластической деформации, достаточной для образования дислокационных скоплений. Трещина образуется в плоскости, перпендикулярной плоскости скольжения дислокации, под действием растягивающих напряжении, в результате концентрации касательных напряжений в головной части скопления. Расчеты показывают, что при действии такой модели трещина возникает при величине локальных касательных напряжений у вершины скопления 10"' G. Этому соответствует образование скопления из 102 — 103 дислокации. Параметр G введен Ирвином, физический смысл этого параметра состоит в том, что он характеризует работу, которую надо затратить на образование новой поверхности трещины единичной длины или переместить фронт трещины единичной длины на единичное расстояние. Другая разновидность зарождения трещин у барьеров при возникновении скоплений дислокации в параллельных плоскостях скольжения показана на рисунке 2.1.2, б.

Концентрация напряжений в металлических материалах, связанная с надрезами, канавками, отверстиями или другими дефектами, как правило, приводит к снижению предела выносливости. Необходимо отметить, что усталостная трещина сама по себе является надрезом, вызывающим высокую концентрацию напряжений. В области концентратора повышается локальное напряжение в материале. Фактическое напряжение у вершины концентратора атах значительно больше номинального стн Отношение отах/ст„=а0 называется теоретическим коэффициентом концентрации напряжений при их упругом распределении. Снижение пределов выносливости при наличии концентратора напряжений оценивается эффективными коэффициентами концентрации:

мер, для тонкой пластины с трещиной длиной 21 K=ay'nl. От этой зоны появляются импульсы АЭ, число которых также связано с К. Когда локальное напряжение превосходит предел прочности, происходит микроразрыв — скачкообразное увеличение дефекта; он проходит через эту зону, в результате чего также появляются сигналы АЭ. При дальнейшем нагружении процесс повторяется. Таким образом, число импульсов N АЭ должно расти с ростом К. Связь эту определяет формула

располагаясь при этом на более близком расстоянии друг от друга, т. е. концентрируются вблизи вершины надреза, трещины и т. п. (рисунок 2.1.1, б). Плотность силовых линий вблизи вершины дефекта зависит от его формы. Вблизи вершины длинной острой трещины плотность силовых линий особенно велика. Таким образом, в зоне, непосредственно прилегающей к вершине трещины, величина силы, приходящейся на единицу площади, больше и, следовательно, выше локальное напряжение. Для идеально упругого твердого тела легко можно рассчитать возрастание напряжений вблизи вершины эллиптического отверстия. Аналогичные расчеты могут быть выполнены с достаточной степенью точности и для твердых тел, содержащих отверстия (надрезы, трещины) другой формы. Наиболее часто трещины возникают у вершин скоплений дислокаций вблизи каких-либо барьеров: включений избыточных фаз, границ зерен, двойников, сидячих дислокации и т. д. В непосредственной близости от барьера (рисунок 2.1.2, а) краевые дислокации в плоском скоплении могут под действием напряжений оказаться настолько тесно прижатыми друг к другу, что их экстраплоскости сливаются, а под ними образуется зародышевая микротрещина. Эта схема прямо предполагает необходимость некоторой пластической деформации, достаточной для образования дислокационных скоплений. Трещина образуется в плоскости, перпендикулярной плоскости скольжения дислокации, под действием растягивающих напряжении, в результате концентрации касательных напряжений в головной части скопления. Расчеты показывают, что при действии такой модели трещина возникает при величине локальных касательных напряжений у вершины скопления 10"1 G. Этому соответствует образование скопления из 102 — 103 дислокации. Параметр G введен Ирвином, физический смысл этого параметра состоит в том, что он характеризует работу, которую надо затратить на образование новой поверхности трещины единичной длины или переместить фронт трещины единичной длины на единичное расстояние. Другая разновидность зарождения трещин у барьеров при возникновении скоплений дислокации в параллельных плоскостях скольжения показана на рисунке 2.1.2, б.

где стлок — локальное напряжение зарождения; агс — гидростатическое напряжение. Значение алок — связано с локальной плотностью дислокаций РЛОК, которая в упрощенном виде зависит линейно от деформации [393]. Таким образом, если алок -^ Крлок, то деформа-

Прежде всего чрезвычайно трудно осуществить отрыв покрытия одновременно во всех точках площади контакта. Если покрытие и металл находятся в твердом состоянии, то разрыв обычно начинается в точке, где локальное напряжение превышает локальную прочность [6]. Общеизвестно, что даже в случае обычного измерения прочности на разрыв однородных объемных образцов, наличие поверхностных трещин и других дефектов поверхности или структуры приводит к преждевременному разрушению образцов. В еще большей степени это должно иметь место при нарушении контакта между двумя разнородными телами (покрытием и защищаемым металлом).

(1) мода сдвига, приводящая к множеству дислокационных петель сдвига, количество которых увеличивается при увеличении деформации и которые накладывают на частицу локальное напряжение порядка Cfy, где G — модуль сдвига и у — деформация сдвига;

(2) мода перекрестного скольжения, вызывающая множество призматических петель и локальное напряжение сдвига, равное приблизительно Gfy, где / — объемное содержание частиц;

Изучение деформации в области задиров при абразивном износе пластичных материалов позволило выяснить, что под поверхностью задира и перед ней расположены зоны больших деформаций на глубину до 10 мкм. Эти зоны находятся при обработке под гидростатическим давлением, которое препятствует образованию и росту пор и повышает разрушающее локальное напряжение. Знакопеременная нагрузка на поверхность, даже достаточно малая, может привести к усталостному разрушению.

В теории зарождения и роста трещины используются два критерия: силовой и энергетический. Согласно первому локальное напряжение в месте зарождения микротрещины или в вершине растущей трещины должно превосходить напряжение теоретической прочности. По энергетическому критерию процесс зарождения трещины должен быть энергетически выгодным.

где .D — в мм, Е — в МПа, a J6Tj — в Н/мм3/2, и определить локальное напряжение, МПа,




Рекомендуем ознакомиться:
Легирующий компонент
Легирующими элементами
Легкокипящего компонента
Легкоплавких материалов
Легкоплавкого компонента
Легкового автомобиля
Ленинградским отделением
Ленинградского объединения
Лаборатории института
Ленточные фундаменты
Ленточных материалов
Ленточным транспортером
Ленточного материала
Летательными аппаратами
Лезвийного инструмента
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки