Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Дисперсно кольцевого



Режим течения двухфазного потока зависит от теплофизических свойств жидкости и пара, расходов отдельных фаз и от размеров и положения трубы в пространстве. Визуальные наблюдения и киносъемки показали, что в вертикальных трубах в основном существуют четыре режима течения: пузырьковый (рис. 1.1, а), снарядный (рис. 1.1,6), кольцевой или дисперсно-кольцевой (рис. 1.1, в) и эмульсионный (рис. 1.1,е).

этом режиме часть этой жидкости срывается потоком пара, в самом паровом стержне движутся отдельные капли жидкости, число которых тем выше, чем больше х (дисперсно-кольцевой режим). Дальнейшее возрастание паросодержания приводит к эмульсионному режиму течения паровой смеси, когда почти вся жидкость более

На рис. 1.2 приведены типичные кривые, устанавливающие границы перехода от одного режима к другому [124]. Как видно из рисунка, область существования пузырькового режима невелика. При больших расходах [в рассматриваемой работе при режимах, когда рш> 1700ч-2000 кг/(м2-с)] снарядный режим вообще не наблюдается, т. е. пузырьковый режим сменяется непосредственно дисперсно-кольцевым. В потоках с меньшими значениями массового расхода рш дисперсно-кольцевой режим наступает при более высоких 'паросодержаниях х.

В условиях дисперсно-кольцевой структуры потока часть жидкости течет у стенки трубы, а часть движется в диспергированном виде в паровом ядре. При некотором значении р жидкая пленка начинает высыхать, что приводит к резкому ухудшению теплоотдачи *.'

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и. характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперсно-кольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.

В условиях кольцевой .структуры двухфазного потока на поверхности жидкой пленки образуются мелко- и крупномасштабные, волны. Фазовая скорость крупномасштабных волн больше средней скорости течения жидкости в пленке. Под влиянием потока пара капли жидкости срываются с гребней крупномасштабных волн и уносятся в ядро потока. Это так называемый механический (или динамический) унос. Как показано в гл. 1, при заданных свойствах жидкой и паровой (газовой) фаз, геометрии канала и плотности орошения началу срыва капель с поверхности пленки отвечает вполне определенное значение скорости пара (газа). По достижении этой скорости чисто кольцевая структура потока переходит в -дисперсно-кольцевую.

Когда вся жидкая фаза сосредоточена в пленке (кольцевой режим течения), то средняя скорость жидкости в пленке дапл равна осредненной по сечению истинной скорости жидкости wf. В условиях дисперсно-кольцевой структуры часть жидкости движется в виде капель в паровом (газовом) ядре потока, т. е. в области повышенных скоростей. Средняя скорость капель в общем случае меньше средней истинной скорости пара w", но может значительно превышать среднюю скорость пленки. Следовательно, шпл<о/ и чем больше капель движется в ядре потока, тем меньше относительная скорость пленки &упл/а/ [180].

В работе авторов [208] приведены примеры теоретических решений, которые в ряде случаев дают приемлемые для технических расчетов параметры пленки. Однако для расчета средних коэффициентов теплоотдачи при кипении в условиях дисперсно-кольцевой структуры в работе [208] рекомендуются эмпирические зависимости, полученные с помощью теории подобия.

Границы дисперсно-кольцевой структуры определяются началом срыва капель жидкости с поверхности пленки (нижняя граница) и явлениями кризиса теплообмена (верхняя граница). При возникновении кризиса

Как уже отмечалось, внутри дисперсно-кольцевой структуры наблюдаются две области, различающиеся между собой по характеру течения пленки и по механизму процессов обмена. Переход от области интенсивного срыва капель жидкости в ядро потока к области течения пленки с относительно гладкой поверхностью происходит при некотором значении паросодержания, обозначаемом символом ХЬ.Р [45]. По данным авторов работы [49], значение Л;ЛР не зависит от q и для жидкости с заданными физическими свойствами определяется лишь гидродинамическими условиями, складывающимися в потоке. Например, с ростом массовой скорости при х<х&р возрастает унос капель с поверхности пленки и резко снижается толщина последней (рис. 8.6), поэтому значение лгдр уменьшается. Зависимости х&р от рш приведены на рис. 8.13 [118].

В условиях дисперсно-кольцевой структуры потока, т. е. с момента начала срыва капель с поверхности пленки, определяемого формулами (1.72) и (1.73), расчет коэффициента теплоотдачи следует вести, подставляя в формулу (8.5) действительную среднюю скорость жидкости в пленке, которая может быть во много раз меньше скорости w' . Однако, как уже отмечалось, в обогреваемых трубах из-за набухания пристенного двухфазного слоя весьма трудно точно измерить толщину пленки, а следовательно, и среднюю скорость течения в ней жидкости. В связи с этим был предложен метод, дающий возможность, минуя непосредственные измерения, найти эффективное значение скорости жидкости в пленке ауэф, которым определяются интенсивностьчтеплообмена и гидродинамическое сопротивление при дисперсно-кольцевой структуре [180]. Метод основан на гидродинамической теории теплообмена. Предполагается, что в двухфазном потоке при определенных сочетаниях режимных параметров (так же как и в однофазном) устанавливается соответствие между интенсивностью теплообмена и гидродинамическим сопротивлением. .

1,2 — граница пузырькового и дисперсно-кольцевого режимов соответственно; 3. 4, 5 — опытные данные по пузырьковому, снарядному и дисперсно-кольцевому режимам

Наиболее сложные законы тепло- и массообмена наблюдаются при дисперсно-кольцевой структуре двухфазного потока. В этом случае коэффициент теплоотдачи определяется действительной скоростью жидкости, текущей в пленке, и. характером волнообразования на ее поверхности. Следовательно, знание параметров пленки является необходимым условием для создания обоснованных методов расчета интенсивности теплообмена в условиях дисперсно-кольцевого режима течения парожидкостной смеси. Эти знания являются также ключом к пониманию физического механизма возникновения кризисов теплообмена при кипении в трубах и позволяют получить рациональные формулы для расчета плотностей критических тепловых потоков или граничных паросодержаний, превышение которых ведет к резкому ухудшению теплоотдачи.

Нижняя граница дисперсно-кольцевого режима течения паро-жидкостной смеси, очевидно, может быть определена по формулам (1.72) и (1.73) для расчета начала уноса капель в ядро потока,

паросодержаниях. Это объясняется тем, что в рассматриваемых условиях даже при весьма высоких плотностях теплового потока проявляется влияние скорости смеси. В соответствии с рис 8.17 для дисперсно-кольцевого потока формула (8.5) принимает вид

В данном параграфе приводится, возможно, первая попытка расчета <7кр ДЛЯ описанных выше локальных интенсификаторов, основанная на методике расчета кризиса теплообмена при кипении теплоносителя в гладких стержневых сборках, в которой используются подход и критерии, разработанные В. Н. Смолиным [90]. С этой целью для определения критической плотности теплового потока используется третья корреляция указанной методики расчета, предназначенная для предельного случая дисперсно-кольцевого движения, при условии, что коэффициент тепло-гидравлической неравноценности принимается равным единице. Наложение этого условия вызвано тем, что при наличии интенсификаторов происходит интенсивное перемешивание теплосодержания потока по поперечному сечению сборки. Вместо фактора, учитывающего расположение дистанционирующих решеток, в третью корреляцию методики расчета 156

89.Определение границ режима и параметров дисперсно-кольцевого потока в кольцевом канале/В. Н. Зеленский и др. Препринт ФЭИ-172,1969.

Начало дисперсно-кольцевого режима с роликовыми волнами на поверхности пленки соотношением

Наступление дисперсно-кольцевого режима без роликовых волн (только с рябью на поверхности пленки) описывается выражением

Граница начала дисперсно-кольцевого режима

При диаметрах rf< 17-10~3 м наблюдается существенное влияние диаметра на значения относительных потерь. Особенно это проявляется в области дисперсно-кольцевого режима течения. Поэтому для d < 17- 10~3 м значения Дрт/Д/70 из номограммы рис. 2.6 необходимо умножить на а== — / (d) x*-\-f (d)X X х + 1, где / (d) = 8, 4-^496 d (d — диаметр трубы). При расчете необходимо учитывать, что при d > 17- 10~8 м и р > 17,7 МПа а = 1.

Рис. 6.1. Виды зависимостей q«p (x), хяк— начало дисперсно-кольцевого режима; А'П — предельное паросодержание; хтр — граничное паросодержание; //// — область граничного паросодержания:




Рекомендуем ознакомиться:
Дисперсия случайного
Давлением производится
Дисперсионное твердение
Дисперсионному твердению
Дисперсию случайной
Дисперсных карбидных
Дисперсными частицами
Дисперсной упрочняющей
Дисперсности карбидной
Дисперсно кольцевого
Диспетчерское управление
Диссипативными свойствами
Давлением создаваемым
Дистанционной передачей
Дистанционном управлении
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки