Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Дисперсные наполнители



2. Дисперсные материалы, состоящие из частиц одного или более компонентов, распределенных в матрице ее и образующие механическую смесь — 463,6.

Дисперсионное твердение 569 Дисперсные материалы 635 Диссоциация 318

Высокие антифрикционные свойства политетрафторэтилена получают практическое приложение лишь в композициях на основе этого материала — наполненной смоле, либо в пленочных металлополимерных подшипниках. Чаще всего применяют наполненный тефлон. В качестве наполнителей используют различные дисперсные материалы: графит, двусернистый молибден, порошковидную бронзу, медь и др. Помимо увеличения теплопроводности, наполнители способствуют повышению механических свойств тефлона и улучшают его износостойкость в десятки и сотни раз [43, 45, 46 и 47].

Получение тонкостенных отливок с развитой поверхностью в металлических формах. Большую часть номенклатуры тонкостенных отливок с развитой поверхностью составляют бытовые и сантехнические литые изделия из чугуна, которые по условиям службы не должны иметь отбела. Наиболее распространенным материалом формовочных покрытий, применяемых при производстве тонкостенного чугунного литья в металлические формы, являются канальная сажа и аморфный графит. Эти материалы содержат канцерогенные вещества, вызывающие различные заболевания, и не обеспечивают необходимые санитарно-гигиенические условия труда. Замена этих материалов является чрезвычайно важной задачей. В основу выбора материалов для бессажевых покрытий положены следующие требования: при получении отливок с толщиной стенок 2,5—8 мм — высокая теплоизоляционная способность, при получении отливок с толщиной стенок более 8 мм — высокая термостойкость, сочетающаяся с достаточной теплоизоляционной способностью. Регулирование коэффициента тепловой аккумуляции осуществляется путем подбора материалов с различной плотностью (пористостью). Высокоэффективными теплоизоляторамй являются материалы с коэффициентом тепловой аккумуляции до 4 ккал/м2-0 С-ч1/2. Исследованиями канальной сажи установлено, что она представляет собой частички твердого углерода, окруженные тонким слоем адсорбированного воздуха. Твердая фаза в саже составляет 5%, газовая — 95%. Большое количество газовой фазы определяет низкое значение коэффициента тепловой аккумуляции (0,9 ккал/м2-0 С-ч1/2). На основании проведенных теоретических и экспериментальных исследований авторы предложили бессажевые дисперсные материалы, имеющие микропористое строение в исходном состоянии: при получении отливок с толщиной стенок 2,5—8 мм — пылевидный вспученный перлит и пробковая мука, при получении отливок с толщиной стенок бо-

Твердые дисперсные материалы

2. Дисперсные материалы, состоящие из частиц одного или более компонентов, распределенных в матрице ее и образующие механическую смесь — 463,6.

Дисперсионное твердение 569 Дисперсные материалы 635 Диссоциация 318

Методы теории фракталов, как правило, применяются в самых сложных разделах теоретической физики — квантовой теории поля, статистической физике, теории фазовых переходов и критических явлений. Цель монографии — показать, что идеи н методы теории фракталов могут быть эффективно использованы в традиционном, классическом разделе механики — механике материалов. Круг рассмотренных материалов достаточно широк: дисперсные материалы от металлических порошков до оксидной керамики, полимеры, композиционные материалы с различными матрицами и наполнителями, полиграфические материалы. Построена статистическая теория структуры и упруго—прочностных свойств фрактальных дисперсных систем. Разработан фрактальный подход к описанию процессов консолидации дисперсных систем. Развита самосогласованная теория эффективного модуля упругости дисперсно—армированных композитов стохастической структуры в полном диапазоне изменения объемной доли наполнителя. Теория обобщена на композиты с бимодальной упаковкой наполнителей, а также на композиционные материалы с арми — рованием по сложным комбинированным схемам. Рассматривается применение теории фракталов для исследования микроструктуры и физико— механических свойств полиграфических материалов и технологии печатных процессов.

На стадии консолидации дисперсные материалы являются пористыми. Установление и изучение закономер — ностей поведения и свойств таких материалов является одной из главных проблем теории дисперсных систем. Пористые материалы представляют собой простейшие композиты (частицы скелета — воздух). Понимание механизмов формирования свойств и методы их описания для такой простейшей композиции понадобятся далее для разработки теории свойств более сложных композитов.

В отличие от компактных тел консолидированные дисперсные материалы характеризуются ярко выраженным непостоянством объема, и в еще большей мере непостоянством степени контакта между структурными элементами, и непостоянством свойств при механической деформации и термической обработке. Так, например, исходный объем, занимаемый таким материалом, в результате механической деформации и термической обработки может уменьшиться в несколько раз, а поверхность контактных участков между частицами, сопротивление деформации и электропроводность могут при этом увеличиться в десятки и сотни тысяч раз. Модуль упругости, который у компактных тел имеет практически постоянное значение, у консолидированных тел изменяется так же, как степень контакта, твердость и прочностные характеристики.

В данной монографии была поставлена цель показать, что идеи и методы теории фракталов могут быть эффективно использованы в традиционном, классическом разделе механики — механике материалов. Круг рассмотренных материалов достаточно широк: дисперсные материалы от металлических порошков до оксидной керамики, полимеры, композиционные материалы с различными матрицами и наполнителями, полиграфические материалы.

Установлено, что параметр кристаллической ячейки всех материалов с повышением температуры увеличивается незначительно, при этом у композиционных материалов этот параметр больше. Величина межслоевого расстояния практически не зависит от температуры до момента достижения температуры плавления кристаллической фазы. Однако введение наполнителей приводит к изменению межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица материала криолон-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевым расстоянием меньшим, чем у чистого ПТФЭ. Температура 553 К для ПТФЭ является критической. Начиная с этой температуры идет процесс плавления кристаллических областей, который заканчивается при температуре 603 К. Степень "дальнего" порядка в матрице при этом уменьшается,

параметр больше. Величина межслоевого расстояния практически не зависит от температуры до достижения температуры плавления кристаллической фазы. Однако влияние наполнителей вызывает изменение межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица криолона-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевыми расстояниями меньшими, чем у чистого ПТФЭ. Степень кристалличности матрицы с повышением температуры возрастает (рис. 6.19).

Наряду с ненаполненными пластмассами (ПЭ, ПТФЭ, полиамиды и др.) в узлах трения широко используются антифрикционные самосмазывающиеся пластмассы, содержащие в своем составе антифрикционные, армирующие и дисперсные наполнители, широкое применение получили комбинированные самосмазывающиеся материалы: металлофторопластовые ленты, различные ленточные металлопласты, ленты на основе антифрикционных тканей. При помощи методов порошковой металлургии разрабатываются новые классы материалов и покрытий, имеющие повышенную износостойкость, жаропрочность, твердость, коррозионную стойкость.

Используемые в настоящее время твердые наполнители делятся на дисперсные и волокнистые {Л. 76]. В зависимости от химической природы полимера дисперсные наполнители могут быть разделены на активные, улучшающие свойства полимера, и пассивные, введение которых в основном преследует цель снижения стоимости изделия. Активные наполнители '(металлы, кварц, стекло) обладают высокой поверхностной энергией (см. гл. 4), т. е. полностью смачиваются почти всеми чистыми жидкостями. Введение активных наполнителей в полимеры оказывает на них усиливающее действие, что связано с эффектом ориентации структурных элементов полимера вокруг частиц наполнителя [Л. 77]. Каждая частица активного наполнителя,

Классификация композиционных материалов. В табл. 1.1 дана классификация композиционных материалов. Наряду с непрерывными волокнами используются дисперсные наполнители, которые могут представлять собой очень короткие волокна, чешуйки, порошки и другие частицы. Физико-механические свойства композиционных материалов прежде всего определяются типом и свойствами наполнителя, распреде-

Классификация композиционных материалов. В табл. 1.1 дана классификация композиционных материалов. Наряду с непрерывными волокнами используются дисперсные наполнители, которые могут представлять собой очень короткие волокна, чешуйки, порошки и другие частицы. Физико-механические свойства композиционных материалов прежде всего определяются типом и свойствами наполнителя, распреде-

Краски, снижающие шероховатость поверхности отливок из алюминиевых и магниевых сплавов при литье в кокиль (табл. 33 и 34) [72], содержат более дисперсные наполнители, чем теплоизолирующие краски. Молотый асбест как грубодисперсный материал в этих красках не применяют, а скрыто кристаллический графит за-

Введение дисперсных наполнителей в термопласты с высокой энергией разрушения практически всегда приводит к ее снижению. Способность таких термопластов поглощать большое количество энергии в процессе разрушения обусловлена в первую очередь развитием пластических сдвиговых деформаций или образованием "микротрещин. Например, полиамиды обладают удельной поверхностной энергией разрушения от 103 до 10* Дж/м2, тогда как хрупкие стеклообразные полимеры типа отвержденных эпоксидных смол — около 102 Дж/м2. Дисперсные наполнители вводят в термопласты с высокой энергией разрушения для снижения их стоимости, повышения жесткости и прочности при сжатии и улучшения их технологических характеристик при переработке. При этом их прочность при растяжении и ударная вязкость снижаются вследствие уменьшения доли полимера в наполненной композиции.

Анализ экспериментальных данных, имеющихся в литературе, позволяет сделать некоторые выводы о поведении композиционных материалов при тепловом расширении (рис. 6.8). Для. удобства, кривые на рис. 6.8 экстраполированы к фр = 1,0, хотя в литературе приводятся, главным образом, данные для объемной доли наполнителя не выше 0,5. Основными источниками информации служила периодическая литература, хотя используются также некоторые ранее не публиковавшиеся данные.' На рис. 6.8 приведены данные для композиционных материалов на основе различных полимеров, термические коэффициенты расширения которых лежат в широком интервале — от ут = 9-10~5 Кг1 для полиэфирной смолы и до Ym = 72-10~5 K~J для полиуретана, а также разнообразных наполнителей, коэффициенты расширения которых лежат в интервале от Yp = 0,5-10~5 для стекла до ур= 14-1(Ь5 К'1 для хлорида натрия. Приведены также данные для наполнителей, различающихся по форме и размерам частиц (в литературе имеется мало данных по этому вопросу). Пунктирные линии на рис. 6.8 соответствуют свойствам композиционных материалов, содержащих в качестве наполнителя ткани и волокна, а сплошные — дисперсные наполнители. Ключом к рис. 6.8 является табл. 6.6. Рис. 6.8 достаточно сложен, поэтому данные, приведенные на нем, обобщены в виде графика на рис. 6.9.

Установлено, что параметр кристаллической ячейки всех материалов с повышением температуры увеличивается незначительно, при этом у композиционных материалов этот параметр больше. Величина межслоевого расстояния практически не зависит от температуры до момента достижения температуры плавления кристаллической фазы. Однако введение наполнителей приводит к изменению межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица материала криолон-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевым расстоянием меньшим, чем у чистого ПТФЭ. Температура 553 К для ПТФЭ является критической. Начиная с этой температуры идет процесс плавления кристаллических областей, который заканчивается при температуре 603 К. Степень "дальнего" порядка в матрице при этом уменьшается,

параметр больше. Величина межслоевого расстояния практически не зависит от температуры до достижения температуры плавления кристаллической фазы. Однако влияние наполнителей вызывает изменение межслоевого расстояния, при этом природа и форма частиц наполнителя оказывают различное влияние на формирование надмолекулярной структуры. Поэтому матрица криолона-3, содержащего волокнистый наполнитель, имеет межслоевое расстояние большее, чем у чистого ПТФЭ, в то время как структура матрицы материала КВН-3, содержащего дисперсные наполнители, характеризуется межслоевыми расстояниями меньшими, чем у чистого ПТФЭ. Степень кристалличности матрицы с повышением температуры возрастает (рис. 6.19).

Из предыдущего раздела следует, что жесткие дисперсные наполнители при наличии прочной адгезионной связи увеличивают модуль упругости композиций, т. е. начальный наклон диаграмм напряжение — деформация. При этом резко уменьшается относительное удлинение при разрыве. Жесткие наполнители обычно также снижают разрушающее напряжение при растяжении, хотя довольно часто могут увеличивать его, как, например, сажа в каучуках.




Рекомендуем ознакомиться:
Дислокаций вследствие
Давлением приведены
Дислокационных скоплений
Дислокационной субструктуры
Дисперсия случайного
Давлением производится
Дисперсионное твердение
Дисперсионному твердению
Дисперсию случайной
Дисперсных карбидных
Дисперсными частицами
Дисперсной упрочняющей
Дисперсности карбидной
Дисперсно кольцевого
Диспетчерское управление
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки