Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Дислокационного скопления



При превышении температурой порогового значения Т,^ (первой критической температуры) металл переходит в вязкое состояние. Долгое время считалось, что микромеханизм вязкого разрушения представляет собой процесс слияния пор, возникающих около частиц второй фазы [47]. Однако электронно-микроскопические и рентгеновские исследования микроразрушения кристаллических материалов выявили более сложный механизм развития трещины, включающий две стадии повреждаемости. На первой стадии при незначительной степени деформации образуются субмикроскопические кристаллографические трещины, обусловленные эволюцией дислокационной структуры. Затем эти зародышевые трещины сливаются в критическую трещину, что означает переход от дислокационного механизма повреждаемости к вакансионному, т. е. образованию пор около групп вакансий, а при высоком уровне напряжений-около частиц второй фазы [47].

При превышении температурой порогового значения ТГО1 (первой критической температуры) металл переходит в вязкое состояние. Долгое время считалось, что микромеханизм вязкого разрушения представляет собой процесс слияния пор, возникающих около частиц второй фазы [43]. Однако электронно-микроскопические и рентгеновские исследования микроразрушения кристаллических материалов выявили более сложный механизм развития трещины, включающий две стадии повреждаемости На первой стадии при незначительной степени деформации образуются субмикроскопические кристаллографические трещины, обусловленные эволюцией дислокационной структуры. Затем эти зародышевые трещины сливаются в макротрещину, что означает переход от дислокационного механизма повреждаемости к вакансионному, т. е. образованию пор около групп вакансий, а при высоком уровне напряжений- около частиц второй фазы [37].

Зарождение микротрещин и их рост трактуются с позиций . дислокационного механизма. Изменение характеристик деформации и разрушения металлов при понижении температуры объясняется температурной зависимостью напряжения, необходимого для преодоления дислокациями препятствий (примесных атомов, границ зерен, вакансий и т. д.).

Основными факторами, определяющими уровень неупругих деформаций и их зависимость от числа циклов напряжения при различных уровнях напряжений, наряду с общими свойствами сплавов являются особенности дислокационного механизма деформирования сплавов при циклическом нагру-жении [9, 10], скорость изменения деформаций в процессе циклического деформирования [10J и остаточные напряжения второго рода, возникающие в локальных объемах металла (эффект Баушинге-ра) •[!].

На основании дислокационного механизма зарождения трещин были разработаны различные модели разрушения материалов при пластической деформации; при этом причинами разрушения могут быть: 1) скопление (нагромождение) дислокаций в отдельных плоскостях скольжения; 2) взаимодействие дислокаций, движущихся в пересекающихся системах скольжения; 3) взаимодействие дефектов кристаллической решетки (безбарьерная модель) ; 4) разрыв и частичное смещение дислокационных стенок; 5) взаимодействие упругих полей напряжений, образованных дислокациями.

Механизм длительного разрушения в условиях ползучести (иногда применяют термин «статическая усталость», который мы используем в дальнейшем) представляет собой сочетание дислокационного механизма развития микротрещин с термофлукту-ационным и диффузионным механизмами образования и движения вакансий [30, 77]. Характерной особенностью повреждений при ползучести является образование пор, появляющихся наряду с микротрещинами и вызывающих специфическую объемную ползучесть, т. е. прогрессирующее во времени разрыхление материала [9, 10, 30, 361. В условиях постоянного или монотонно изменяющегося напряжения объемная ползучесть становится заметной (в отличие от сдвиговой ползучести) лишь незадолго до момента полного разрушения. Однако при циклическом действии напряжений объемная ползучесть отмечается на более ранних стадиях деформационного процесса. Стадия диссеминированных повреждений завершается появлением поперечных трещин, которые видны на поверхности образца при небольшом увеличении микроскопа или даже простым глазом.

При варианте 1А величина а = ах, а е — е±. В этом случае как для ползучести, так и для термоусталости характерно интенсивное деформирование зерна в условиях превалирования дислокационного механизма. Упрочнение тела зерна происходит вследствие процессов деформационного старения и создания дислокационной субструктуры, а границ зерен — вследствие выделения мелкодисперсных частиц карбидной фазы. Интенсивность этих процессов для различных видов нагрузки неодинаковая.

Исследования накопления повреждений и разрушений при термической усталости в основном проводили с чистыми металлами [6]. Испытаниями на цинке было установлено, что в интервале температур от комнатной до —183° С сначала образуются транскристаллитные трещины в полосах скольжения, обычно у крутых изгибов границы и в месте стыка трех зерен. Затем трещины появляются у границ субзерен и двойников. С точки зрения дислокационного-сдвигового механизма разрушение в этом случае можно объяснить скоплением дислокаций у препятствий (в частности, у границ) вследствие искривления плоскостей скольжения и возникновения напряжений, нормальных к плоскости скольжения. При больших напряжениях может произойти разрыв по базисным плоскостям. Появление трещин термоусталости у субграниц зерен рассматривалось как результат пересечения линий скольжения малоугловой границы из-за смещения части дислокационной стенки вдоль линии скольжения. Итак, в этом случае предполагается действие дислокационного механизма при термической усталости, обусловливающего сходство с разрушением при усталости.

рочнения металла при помощи дислокационного механизма мо-

нение происходят за счет привычного дислокационного механизма,

ны дислокационного механизма, поскольку новые дислокации яв-

Наиболее полно дислокационную модель зарождения и роста пор, обусловленных частицами, разработал Броек [392]. Согласно этой модели поры образуются на границе раздела частица— матрица вследствие создания у частиц дислокационных скоплений (рис. 5.4). Вокруг частиц образуются дислокационные петли (рис. 5.4, а). Под действием сил изображения эти петли отталкиваются от частиц (рис. 5.4, б). В то же время лидирующая петля выталкивается к частице следующими за ней дислокациями и действующим сдвиговым напряжением (рис. 5.4, в). Когда одна или более петель будут вытолкнуты на границу раздела, частица вдоль линии АВ отделится от матрицы и произойдет рождение поры. Существенным следствием этого будет значительное снижение отталкивающих сил изображения, действующих на следующие петли, в результате чего большая часть дислокаций скопления выйдет на вновь образованную поверхность поры, тем самым увеличивая ее (рис. 5.4, г). Дислокационные источники, испускавшие петли и ставшие неактивными вследствие образования дислокационного скопления, возобновят свое действие, что приведет к спонтанному росту пор и последующему их слиянию.

Вместе с тем пропорциональность напряжения в головной части дислокационного скопления перед препятствием числу дислокаций в скоплении имеет место как для краевых, так и для ринтовых дислокаций. Это было ранее установлено именно для нагромождений винтовых дислокаций, хотя неизбежна частичная релаксация напряжений в результате перекрывания силовых полей винтовых дислокаций при их близком расположении в скоплении и, кроме того, возможна аннигиляция винтовых участков соседних линий путем скольжения.

Так как ASm = Д5 t^ l/^Vmax, при ЛГ — * Afmax и достаточно больших и можно пренебречь двумя последними слагаемыми в правой части (126). Это означает, что чем больше степень деформации, тем больше нелокальное значение средней величины разблагораживания потенциала образца определяется электрохимическим поведением одного дислокационного скопления.

Выше рассматривался потенциал деформации для одной дислокации или одного дислокационного скопления из п дислокаций. Вместе с тем на практике всегда измеряют заряд поверхности или работу выхода электрона для макроскопического куска металла. Поэтому важно установить соотношение между локальными и нелокальными процессами, доступными наблюдению.

Следовательно, с ростом степени деформации и числа дислокаций в скоплениях происходит локализация деформационного сдвига потенциала нулевого заряда и изменяется работа выхода электрона так, что деформационное влияние на измеряемые параметры двойного электрохимического слоя и измеряемую работу выхода все более определяется поведением области одного дислокационного скопления. В частности, измеряемая средняя работа выхода образца в целом приближается к локальной величине работы выхода в окрестности дислокационного скопления (несмотря на уменьшение числа «активируемых мест» на поверхности).

Вместе с тем пропорциональность напряжения в головной части дислокационного скопления числу дислокаций в скоплении (перед препятствием) имеет место как для краевых, так и для винтовых дислокаций. Это было ранее установлено именно для нагромождения винтовых дислокаций, хотя неизбежна частичная релаксация напряжений в результате перекрывания силовых полей винтовых дислокаций при их близком расположении в скоплении. Кроме того, возможна аннигиляция винтовых участков соседних линий путем скольжения.

Так как ASm = AS « 1/Л^шах при N -+ Nmax и достаточно больших п можно пренебречь двумя последними слагаемыми в правой части выражения (139). Это означает, что чем больше степень деформации, тем больше нелокальное значение средней величины разблагораживания потенциала образца определяется электрохимическим поведением одного дислокационного скопления.

Выше рассматривался потенциал деформации для одной дислока" ции или одного дислокационного скопления из п дислокаций. Вместе с тем на практике всегда измеряют заряд поверхности или работу выхода электрона для макроскопического куска металла. Поэтому важно установить соотношение между локальными и нелокальными процессами, доступными наблюдению.

Следовательно, с ростом степени деформации и числа дислокаций в скоплениях происходит локализация деформационного сдвига потенциала нулевого заряда и изменяется работа выхода электрона так, что деформационное влияние на измеряемые параметры двойного электрохимического слоя и измеряемую работу выхода все более определяется поведением области одного дислокационного скопления. В частности, измеряемая средняя работа выхода образца в целом приближается к локальной величине работы выхода в окрестности дислокационного скопления (несмотря на уменьшение числа «активируемых мест» на поверхности).

Тот факт, что средняя по поверхности образца величина работы выхода электрона приближается к локальной величине работы выхода в окрестности дислокационного скопления, делает ее чувствительной к характеру дислокационной субструктуры. В главе II отмечалось усиление измеренного эффекта деформационного сдвига нулевой точки металла на стадии деформационного упрочнения и ослабление на стадии динамического возврата несмотря на рост общего числа дислокаций с увеличением степени




Рекомендуем ознакомиться:
Дискретных технологических
Дискретной составляющей
Дискретного преобразования
Дислокаций образуются
Дислокаций расположенных
Дислокации возникают
Дислокационных источников
Дислокационной структуре
Дисперсия распределения
Дальнейшей разработке
Дисперсионные характеристики
Дисперсионного упрочнения
Дисперсионно твердеющим
Давлением рассмотрим
Дисперсных выделений
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки