Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Дислокационных скоплений



Обсуждаемые ниже формальные теории деформационного упрочнения развивались как результат анализа обширного экспериментального материала в области пластического деформирования кристаллов. Исходя из общих дислокационных представлений показано, что деформационное упрочнение является следствием накопления в объеме материала некоторой плотности дислокаций, необходимой для обеспечения заданной степени деформации. Поэтому установление количественной связи между плотностью дислокаций и деформирующим напряжением служит необходимой предпосылкой решения проблемы деформационного упрочнения металлических кристаллов. Нахождению отмеченной связи было посвящено большое количество экспериментальных работ, результаты которых показали, что между напряжением течения и плотностью дислокаций для кристаллов с ГЦК-, ОЦК- и ГПУ-решетками на протяжении всей кривой упрочнения преобладает зависимость вида

Результаты исследований влияния разных покрытий на механические характеристики конструкционных материалов приведены в работах [11, 20—21]. По современным представлениям о разрушении металла предполагается, что покрытие, препятствуя выходу дислокаций на поверхность, может в одних случаях упрочнять основу, а в других — разупрочнять. Эффект влияния покрытий на основной материал будет зависеть от условий, определяющих динамику дислокаций на поверхности раздела [22]. Результат же взаимодействия дислокаций с границей раздела «основа — покрытие» связан с двумя типами источников дислокаций — объемными и поверхностными. Объяснение роли покрытий в упрочнении сплавов с позиций дислокационных представлений об изменениях в структуре поверхностных слоев в процессе деформации дается и в работах [23, 24].

шения методов оценки вязкости разрушения на основе современных дислокационных представлений о кинетике распространения трещин. Сейчас можно считать, что испытания на вязкость разрушения (статическую трещиностойкость) благодаря работам многочисленных исследователей достаточно теоретически обоснованы и апробированы. В первых публикациях по механике разрушения А. А. Гриффите показал, что противоречия между теоретическим сопротивлением разрушению и реальной трещиностойкостью может быть объяснено наличием в материалах дефектов в виде трещин. Даже в случае незначительных нагрузок концентрация напряжений у вершины трещин может достигать значений когезионной прочности. Позднее Г. Р. Ирвином было доказано, что локальные напряжения в устье трещины при статическом нагружении пропорциональны коэффициенту интенсивности напряжений .ИГ, который может быть определен по формуле

Поверхностные-упрочненные слои, содержащие отрезки (debris) дислокаций, также могут являться экранирующими барьерами для выхода дислокаций [125]. Повышенная склонность поверхностных слоев к деформационному упрочнению отмечалась М. В. Классен—Неклюдовой в 1936 г. Основываясь на явлении поверхностного упрочнения при деформировании металла И. Крамер предполагает, что стравливание упрочненного debris-слоя снижает сопротивление пластическому течению за счет запуска заблокированных поверхностных источников дислокаций. Однако противоречие состоит в том, что растворение поверхностного слоя уничтожает эти ранее существовавшие поверхностные источники, например источники типа Фишера. Между тем, еще в 1924 г. Эвальд и Поляни выдвинули общее представ1ление1_об_удалМии «поверхностных препятствий» скольжению при объяснении повышения пластичности в среде растворителя. Хотя предложенное ими [126] обозначение этого эффекта как «механизм Эвальда— Поляни» не является вполне удачным, поскольку его сущность не могла быть в то время расшифрована из-за более позднего появления дислокационных представлений о механизме пластической деформации, это общее представление охватывает любые виды экранирующих поверхностных барьеров и 'для краткости может быть названо барьерным механизмом.

Ряд вероятных механизмов возникновения трещин при пластической деформации предлагается на основе дислокационных представлений.

На основании обстоятельного анализа состояния проблемы повреждаемости и разрушения в работе [4J проведены теоретические и экспериментальные исследования процесса пластической деформации, повреждаемости и разрушения материала на основе комплексного подхода к проблеме с использованием термодинамических, молеку-лярно-кинетических (термоактивационных) и дислокационных представлений.

Закономерности поведения карбидной фазы, хотя и являются весьма существенными, однако не дают исчерпывающего объяснения процессам накопления повреждений и пластического деформирования при термической усталости совместно с ползучестью. Рассмотрим эти вопросы с точки зрения дислокационных представлений.

На основании изучения тонкой структуры и механических свойств металла, можно отметить в пластической области три характерные стадии кривой деформации (рис. 127): область легкого скольжения /, область линейного упрочнения // (наклон кривой в этой области мало зависит от температуры, содержания примесей и других факторов) и область параболического упрочнения — температурно зависимая часть кривой ///. Особенности каждой стадии трактуются в рамках дислокационных представлений.

может быть также описано на основании дислокационных представлений.

Температурная зависимость напряжения течения сплава, упрочненного дисперсными частицами, на основе дислокационных представлений рассмотрена в ряде работ, например [19], а экспериментальная проверка различных теорий, согласно которым, в частности приведенное критическое напряжение сдвига пропорционально T*f>, проведена в работе [185]. Там же рассмотрены условия перехода от одного состояния состаренного сплава [ко-

ствием внешних напряжений [ 38], об изменении при пластическом деформировании кинетики распада переохлажденного аустенита [39 - 49 и др], что находит объяснение в рамках дислокационных представлений. В последние годы выполнены исследования, свидетельствующие о существенном влиянии несовершенств кристаллического строения и на процесс образования 7-фазы при нагреве сталей. Эта сторона явления представляет не меньший интерес, особенно если учесть возможность протекания а ->• 7-превращения под влиянием ударных нагрузок и при эксплуатации изделий в тяжелых условиях [ 50,51].

При испытаниях на воздухе на начальных стадиях нагружения упругая энергия искажений решетки y-Fe значительно растет в результате интенсивного образования плоских дислокационных скоплений в процессе трансляционного скольжения, а также за счет появления дополнительных дефектов упаковки. Это подтверждается результатами просвечивающей электронной микроскопии дислокационной структуры, проведенной на тонких фольгах, приготовленных из испытанных образцов после проведения всех остальных анализов. Обнаруживаются характерные для стали 18-10 ряды дислокационных полос и дефектов упаковки.

Далее кратко рассмотрим основные механизмы образования микротрещин, которые можно подразделить на дислокационные, диффузионные и в результате межзерен-ного сдвига. Дислокационные механизмы могут быть разделены на три группы. К первой группе относятся модели (Зинера, Стро, Коттерелла, Гилмана и др.), связывающие инициированные микротрещины со скоплением дислокаций в плоскостях скольжения. Эти скопления возникают в результате остановки движущихся дислокаций в различных барьерах, которыми являются границы зерен с большими углами разориентировки, включения, поля напряжений. Вторая группа моделей предполагает образование микротрещин в результате скопления дислокаций в окрестностях пересечения систем элементарных актов пластической деформации путем скольжения и двойнико-вания (модель Коттерелла). В соответствии с концепциями моделей третьей группы микротрещины инициируются в результате взаимодействия дефектов кристаллической решетки при пластическом деформировании. Эта группа -барьерные механизмы, описывающие процесс развития трещин в результате объединения цепочек вакансий в движущихся дислокациях со ступенькой; пересечение малоугловых границ; аннигиляции дислокаций в близко расположенных плоскостях скольжения; возникновения поля растягивающих напряжений от двух дислокационных скоплений противоположного знака.

располагаясь при этом на более близком расстоянии друг от друга, т. е. концентрируются вблизи вершины надреза, трещины и т. п. (рисунок 2.1.1, б). Плотность силовых линий вблизи вершины дефекта зависит от его формы. Вблизи вершины длинной острой трещины плотность силовых линий особенно велика. Таким образом, в зоне, непосредственно прилегающей к вершине трещины, величина силы, приходящейся на единицу площади, больше и, следовательно, выше локальное напряжение. Для идеально упругого твердого тела легко можно рассчитать возрастание напряжений вблизи вершины эллиптического отверстия. Аналогичные расчеты могут быть выполнены с достаточной степенью точности и для твердых тел, содержащих отверстия (надрезы, трещины) другой формы. Наиболее часто трещины возникают у вершин скоплений дислокаций вблизи каких-либо барьеров: включений избыточных фаз, границ зерен, двойников, сидячих дислокации и т. д. В непосредственной близости от барьера (рисунок 2.1.2, а) краевые дислокации в плоском скоплении могут под действием напряжений оказаться настолько тесно прижатыми друг к другу, что их экстраплоскости сливаются, а под ними образуется зародышевая микротрешина. Эта схема прямо предполагает необходимость некоторой пластической деформации, достаточной для образования дислокационных скоплений. Трещина образуется в плоскости, перпендикулярной плоскости скольжения дислокации, под действием растягивающих напряжении, в результате концентрации касательных напряжений в головной части скопления. Расчеты показывают, что при действии такой модели трещина возникает при величине локальных касательных напряжений у вершины скопления 10"' G. Этому соответствует образование скопления из 102 — 103 дислокации. Параметр G введен Ирвином, физический смысл этого параметра состоит в том, что он характеризует работу, которую надо затратить на образование новой поверхности трещины единичной длины или переместить фронт трещины единичной длины на единичное расстояние. Другая разновидность зарождения трещин у барьеров при возникновении скоплений дислокации в параллельных плоскостях скольжения показана на рисунке 2.1.2, б.

Механизм зарождения трещин при образовании плоских дислокационных скоплений может быть связан с тепловыми флукгуациями. Если последние вызовут образование двойного перегиба на дислокации, расположенной вслед за головной в скоплении, то может произойти раскрытие трещины на длине / глубиной h « 2b (рисунок 2.1.3).

Рисунок 2.1.2 - Схемы зарождения трещин у дислокационных скоплений: а — по Стро; б — по А. Н. Орлову

Зарождение трещин может происходить и без дислокационных скоплений. Так, в металлах с гранецентрированной кристаллической решеткой

Зависимость механических свойств от температуры отжига имела сложный характер (табл.). Наибольшее уменьшение прочностных показателей наблюдалось в интервале температур 1350...1450°С, а в остальных интервалах их изменение незначительно. Среди показателей пластичности наибольшей чувствительностью отличались 850 и \ур. Протекание первичной рекристаллизации вызывало незначительное понижение показателей прочности и общего остаточного сужения Vf, при этом относительное удлинение и равномерное (без учета шейки) остаточное сужение Ц/р возрастали. Мнкромеханизм разрушения не менялся и носил вязкий транскристаллитный характер с элементами продольного расслоения, которое после рекристаллизации было выражено в значительно меньшей степени. Начало протекания собирательной рекристаллизации соответствовало смене микромеханизма разрушения на вязкий межкристаллитный <-' отдельными участками квазихрупкого разрушения по границам зерен. При 1400°С но фотографиях зерешюй структуры и изломах замечено выделение крупных карбидов по границам зерен, что соответствовало резкому падению характеристик пластичности и прочности. Интенсивность проявления физического предела текучести мощно ОПИСАТЬ разницой между верхним и нижним пределами текучести Да.;-' и иеличиыой площадки текучести ЕТ- Эти величины соответственно возрастали и уменьшались с увеличением температуры отжига до НОЙ'С С, что" видимо связано с дополнительным закреплением дислокаций и дислокационных скоплений в приповерхностных слоях выделяющимися карбидами. Повышение температуры отжига, до 1450(С вызывало уменьшение размера и количества крупных карбидных выделений, что сказывалось на повышении характеристик пластичности, снижении Да-г и некотором увеличении ЕТ/. Дальнейшее повышение температуры отжига приводи ло к увеличению выделения карбидов, заметному возраетани"» доли квазихрупкой составляющей поверхности излома И к уменьшен .но показателей прочности, и пластичности. При этом ДОт сначала ун.ли чивались, а затем понижалась. Показано, что характер изменении, предложенного в [1] критерия Dv — «фрактальной размерности диш

располагаясь при этом на более близком расстоянии друг от друга, т. е. концентрируются вблизи вершины надреза, трещины и т. п. (рисунок 2.1.1, б). Плотность силовых линий вблизи вершины дефекта зависит от его формы. Вблизи вершины длинной острой трещины плотность силовых линий особенно велика. Таким образом, в зоне, непосредственно прилегающей к вершине трещины, величина силы, приходящейся на единицу площади, больше и, следовательно, выше локальное напряжение. Для идеально упругого твердого тела легко можно рассчитать возрастание напряжений вблизи вершины эллиптического отверстия. Аналогичные расчеты могут быть выполнены с достаточной степенью точности и для твердых тел, содержащих отверстия (надрезы, трещины) другой формы. Наиболее часто трещины возникают у вершин скоплений дислокаций вблизи каких-либо барьеров: включений избыточных фаз, границ зерен, двойников, сидячих дислокации и т. д. В непосредственной близости от барьера (рисунок 2.1.2, а) краевые дислокации в плоском скоплении могут под действием напряжений оказаться настолько тесно прижатыми друг к другу, что их экстраплоскости сливаются, а под ними образуется зародышевая микротрещина. Эта схема прямо предполагает необходимость некоторой пластической деформации, достаточной для образования дислокационных скоплений. Трещина образуется в плоскости, перпендикулярной плоскости скольжения дислокации, под действием растягивающих напряжении, в результате концентрации касательных напряжений в головной части скопления. Расчеты показывают, что при действии такой модели трещина возникает при величине локальных касательных напряжений у вершины скопления 10"1 G. Этому соответствует образование скопления из 102 — 103 дислокации. Параметр G введен Ирвином, физический смысл этого параметра состоит в том, что он характеризует работу, которую надо затратить на образование новой поверхности трещины единичной длины или переместить фронт трещины единичной длины на единичное расстояние. Другая разновидность зарождения трещин у барьеров при возникновении скоплений дислокации в параллельных плоскостях скольжения показана на рисунке 2.1.2, б.

Механизм зарождения трещин при образовании плоских дислокационных скоплений может быть связан с тепловыми флуктуациями. Если последние вызовут образование двойного перегиба на дислокации, расположенной вслед за головной в скоплении, то может произойти раскрытие трещины на длине / глубиной h*2b (рисунок 2.1.3).

Рисунок 2.1.2 - Схемы зарождения трещин у дислокационных скоплений: а — по Стро; б — no A. H. Орлову

Зарождение трещин может происходить и без дислокационных скоплений. Так, в металлах с гранецентрированной кристаллической решеткой




Рекомендуем ознакомиться:
Дисковыми трехсторонними
Дискретных случайных
Дискретной информации
Давлением применяют
Дислокаций достигает
Дислокаций происходит
Дислокации образуются
Дислокационные скопления
Дислокационная субструктура
Дислокационного скопления
Дисперсии оптических
Дисперсии случайных
Дисперсионное уравнение
Дисперсионно твердеющие
Дисперсные наполнители
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки