Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Диаграмме растяжения



Разбирая процесс кристаллизации твердого раствора по диаграмме, приведенной на рис. 96, мы видели, что состав твердого раствора и жидкости изменяется непрерывно. Ранее выделившиеся кристаллы более богаты тугоплавким компонентом, чем образовавшиеся позднее при меньшей температуре. Твердая фаза в процессе равновесной кристаллизации должна быть все время однородной, поэтому предполагается, что процесс выравнивания состава твердой фазы (путем диффузии) не будет отставать от процесса кристаллизации. Однако обычно при кристаллизации твердых растворов первые кристаллы имеют более высокую концентрацию тугоплавкого компонента, чем последующие. Вследствие этого ось первого порядка дендрита содержит больше тугоплавкого компонента, чем ось второго порядка, и т. д. Междендритные пространства, кристаллизовавшиеся последними, содержат наибольшее количество легкоплавкого компонента, и поэтому они самые легкоплавкие. Описанное явление носит название дендритной ликвации. Состояние дендритной ликвации является неравновесным, неоднородный раствор имеет более высокий уровень свободной энергии, чем однородный. При длительном нагреве сплава дендритная ликвация может быть в большей или меньшей степени устранена диффузией, которая выравнивает концентрацию во всех кристаллах.

1 На диаграмме, приведенной в начале книги (на форзаце), температуры плавления и наличие растворимости не показаны.

На диаграмме, приведенной на рис. 252, указана область температур правильного нагрева (I) в зависимости от скорости нагрева (без выдержки при температуре нагрева). Как видно

В качестве мягких припоев применяют сплавы легкоплавких металлов: свинца, олова, висмута, кадмия, чаще всего сплавы свинца и олова. Наиболее легкоплавким сплавом в системе РЬ—Sn является эвтектический, содержащий 62% Sn и 38% РЬ (рис. 456) (приблизительно 2/3 Sn и '/з РЬ). В производстве его часто называют третником. Температура плавления сплава 183°С. Стандартное обозначение сплава ПОС-61 (припой оловянносвинцовый, 61% Sn). Припои ПОС-40 и ПОС-30 содержат, следовательно, 40 и 30% Sn и имеют, как это можно определить по диаграмме, приведенной на рис. 456, более высокую температуру плавления.

Сплавы железа с углеродом после окончания кристаллизации имеют указанную выше различную структуру. Относительное количество структурных составляющих в сплавах с различным содержанием углерода можно определить по диаграмме, приведенной на рис. 79. Однако фазовый состав всех сплавов одинаков: при температурах < 727 °С они состоят из феррита и цементита.

Перевод одних единиц измерения в другие можно осуществить по диаграмме, приведенной на рис. 1.

Расчет ослабления амплитуды при контроле теневым методом. На диаграмме, приведенной на рис. 58, в безразмерных координатах показано максимальное ослабление /С0 сигнала дефектом, расположенным посередине между одинаковыми излучающим и приемным преобразователями. Заштрихованные зоны соответствуют разбросу, вызываемому различной формой и длительностью излучаемых импульсов, Если дефект расположен не посередине, то, пользуясь графиками (рис. 59), можно учесть его смещение в сторону излучателя или приемника.

Перевод одних единиц измерения в другие можно осуществить по диаграмме, приведенной на рис. 1.

К.о — поправочный коэффициент, зависящий от отношения диаметра проволоки к диаметру витка. Величина К0 для цилиндрических пружин определяется по диаграмме, приведенной на фиг. 61. Обычно применяемые формулы, выведенные без учета коэффициента К0, дают достаточно точные результаты лишь при DCp —. — > 12. В данном примере Dcp = 90 мм; dt= 10 мм;

У винтовых вальцовок подача конуса производится нажимным винтом по мере ослабления давления роликов на стенку трубы. Таким образом, характерной особенностью винтовой вальцовки является переменный характер давления роликов. Характер изменения давления роликов изображен на диаграмме, приведенной на фиг. 48. Винтовые вальцовки малопроизводительны и тяжелее вальцовок других типов. Однако в ремонтной практике винтовые вальцовки имеют преимущественное применение.

Грузоподъемность крана в зависимости от вылета стрелы определяется по диаграмме, приведенной на рис. 9-11.

взаимодействия дислокаций. Перемещение последних происходит не беспрепятственно, а с преодолением различных потенциальных барьеров. Повышение уровня напряжений, необходимых для преодоления барьеров при пластическом деформировании связывают с явлением деформационного упрочнения. Наряду с повышением сопротивления деформированию отмечаются факторы, снижающие напряжение текучести, связанные с понижением числа и высоты барьеров. Это явление называют возвратом. Возврат, идущий при холодной деформации называется динамическим. В зависимости от степени пластической деформации в металле образуются различные дислокационные структуры и в связи с этим на кривых упрочнения выделяют характерные стадии деформационного упрочнения: 1 - стадия легкого скольжения; 2 - быстрого (линейного) деформационного упрочнения; 3 - динамического возврата. Естественно, такое разделение условно, поскольку на каждой стадии деформирования реализуются факторы, упрочняющие и разупрочняющие металл. В зависимости от того, какие факторы проявляются интенсивнее, и производят деление на отдельные стадии деформации металла. На стадии легкого скольжения упрочнение носит линейный характер Е = const. Однако модуль упрочнения Е настолько мал (Е « 1(Н G, G - модуль сдвига), что на стадии легкого скольжения можно полагать металл неупрочняемым. На диаграмме растяжения эта стадия соответствует, так называемой, площадке текучести. Основной вклад в деформацию вносят дислокации, прошедшие через весь кристалл и вышедшие на поверхность. При этом длина свободного пробега! дислокации постоянна и достигает значительных величин (около 0,8 мм для железа).

последовательности: 5(дс)< 5<д'< ^ис\ Отличительной особенностью условной диаграммы растяжения (рис. 1.10,а, б, в) деформационно-состаренных металлов является увеличение или появление на ней площадки текучести (^(дс)>//(ио)_ Отметим, что на диаграмме растяжения деформационно-состаренных сталей появляется зуб текучести, обусловленный различием "стартовых" напряжений и напряжений текучести. Различие параметров исходных диаграмм растяжения упрочнения состаренного и исходного металла показано на рис. 1.10,г. В зависимости от структуры металла возможны три вида а(е) для состаренного металла: 1) модули упрочнения для состаренного Е(дс) и исходного Е<ис> металлов равны Е<дс^= Е<ис>; 2) Е<дс)< Е(ис> и 3) Е<дс» Е<ис). Аналогично можно записать для степенного упрочнения. По-видимому наиболее вероятный случай, когда Е<дс» Е<ис>, поскольку, деформационное старение в большей степени повышает предел текучести. Это отмечается при испытаниях искусственно и естественно состаренных углеродистых и низколегированных сталей, проведенных нами и другими исследованиями. На рис. 1.11,а, б представлены зависимости предела текучести и временного сопротивления от степени предварительной деформации (СПД) ед, искусственно состаренных (при температуре Т = 250°С и времени выдержки тс=1ч.) сталей. Как и следовало ожидать увеличение СПД приводит к возрастанию прочностных характеристик сталей (рис. 1.11). Причем, более интенсивно возрастает предел текучести особенно для СтЗ. Отметим, что после искусственного старения на диаграмме растяжения (а - Е) наблюдается четко выраженная площадка текучести. Таким образом, с точки зрения прочностных показателей предварительное деформирование и старение металла не ухудшает эксплуатационные свойства сталей.

торможения дислокаций. Перемещение последних происходит не беспрепятственно, а с преодолением различных потенциальных барьеров. Повышение уровня напряжений, необходимых для преодоления барьеров при пластическом деформировании, связывают с явлением деформационного упрочнения. Наряду с повышением сопротивления деформированию отмечаются факторы, снижающие напряжение текучести, связанные с понижением числа и высоты барьеров. Это явление называют возвратом. Возврат, идущий при холодной деформации, называется динамическим. В зависимости от степени пластической деформации в металле образуются различные дислокационные структуры, и в связи с этим на кривых упрочнения а = f(s) выделяют характерные стадии деформационного упрочнения: 1- стадия легкого скольжения; 2 - быстрого (линейного) деформационного упрочнения; 3 - динамического возврата. Естественно, такое разделение условно, поскольку на каждой стадии деформирования реализуются факторы, упрочняющие и разупрочняющие металл. В зависимости от того, какие факторы проявляются интенсивнее, и производят деление на отдельные стадии деформации металла. На стадии легкого скольжения упрочнение носит линейный характер do/de = const = Е'. Однако модуль упрочнения Е' настолько мал (Е1 « 1СИ G, где G - модуль сдвига), что можно полагать металл на стадии легкого скольжения неупрочняемым. На диаграмме растяжения эта стадия соответствует так называемой площадке текучести. Основной вклад в деформацию вносят дислокации, прошедшие через весь кристалл и вышедшие на поверхность. При этом длина свободного пробега дислокации постоянна и достигает значительных величин (около 0,8 мм для железа). Плотность дислокаций на стадии легкого скольжения растет пропорционально степени деформации. Деформационное упрочнение обусловлено взаимодействием параллельных или лежащих в параллельных плоскостях сдвига дислокаций. При этом глав-

Отличительной особенностью диаграммы растяжения деформационно-состаренных металлов является увеличение или появление на ней площадки текучести (1ДС>1 ). Отметим, что иногда на диаграмме растяжения деформационно-состаренных сталей появляется зуб текучести, обусловленный различием "стартовых" напряжений и напряжений текучести. В зависимости от структуры металла возможны три вида a(s) для состаренного металла: 1) модули упрочнения для состаренного Ед и исходного Е'и

Трещины начинают развиваться задолго до полного разрушения при усталостном, пластическом и даже хрупком разрушении. Например, при однократном статическом растяжении гладкого образца момент появления первой трещины частичного разрушения соответствует точке А на диаграмме растяжения (рис.3.2), причем чем чувствительнее метод дефектоскопии,тем ближе точка А располагается к началу диаграммы.

Закон пропорциональности между напряжением и деформацией является справедливым лишь в первом приближении. При точных измерениях, даже при небольших напряжениях в упругой области, наблюдаются отклонения от закона пропорциональности. Это явление называют неупругостью. Оно проявляется в том, что деформация, оставаясь обратимой, отстает по фазе от действующего напряжения. В связи с этим при нагрузке — разгрузке на диаграмме растяжения вместо прямой линии получается петля гистерезиса, так как линии нагрузки и разгрузки не совпадают между собой.

На диаграмме растяжения (рис. 92, б) прямолинейный участок, соответствующий закону Гука, наклонен под углом а к горизонтальной оси. Отметим текущее напряжение а и соответствующее ему относительное удлинение е. Тогда тангенс угла наклона участка ОА

Трещины начинают развиваться задолго до полного разрушения при усталостном, пластическом и даже хрупком разрушении. Например, при однократном статическом растяжении гладкого образца момент появления первой трещины частичного разрушения соответствует точке А на диаграмме растяжения (рис. 3.2), причем чем чувствительнее метод де-

При испытании некоторых пластических материалов (среднеуг-леродистая сталь, медь, алюминий) на диаграмме растяжения не образуется ясно выраженной стадии текучести (рис. 2.23). Для таких материалов вводится условный предел текучести, равный напряжению, при котором продольная деформация образца е = =0,002, т. е. 0,2%. Условный предел текучести обозначается а0,г.

Как уже отмечалось, трещины начинают развиваться задолго до полного разрушения. Так, например, при однократном статическом растяжении гладкого образца первая обнаруживаемая трещина соответствует точке А на диаграмме растяжения (рис. 1.3).

Ряд материалов, например, чугун, стекло, каменные материалы, кирпич, бетон относятся к так называемым хрупким материалам. Диаграмма растяжения таких материалов существенно отличается от диаграмм пластичных материалов. На рис. 2.94 показан примерный вид диаграммы растяжения чугуна. К характерной особенности всех хрупких материалов можно отнести разрушение образцов при ничтожно малых остаточных деформациях. На диаграмме растяжения почти не получается прямолинейного участка, искривление начинается при сравнительно небольших напряжениях, но сами деформации незначительны, так что отклонение от закона Гука невелико, поэтому в практических расчетах это отклонение не учитывается. При приближении к пределу прочности кривая быстро отклоняется вправо и происходит хрупкое разрушение образца.




Рекомендуем ознакомиться:
Диаграмме соответствуют
Диаграммной влажности
Диаграммой растяжения
Диаграмму изменения
Диаграмму предельных
Диалектического материализма
Диаметральной плоскостью
Датчиками сопротивления
Диаметрально расположенные
Диаметрами отверстия
Диаметром окружности
Диаметром поперечного
Диаметром соответствующим
Диаметров делительных
Диаметров отверстий
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки