Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Деформационного микрорельефа



эффекты, но связан с малыми энергиями ангармонических членов колебательного спектра теплового движения атомов, второй—глав* ным образом ответствен за механические и прочностные свойства кристаллов, а потому связан с большими энергиями. При наложении обоих процессов сочетаются эффекты разного порядка значимости, и сообразно размерам энергетических вкладов этих эффектов при определении деформационного изменения термодинамического потенциала тела в результате всестороннего сжатия или растяжения следует пренебречь термоупругостью как эффектом более высокого порядка.

В случае образования плоских скоплений из п дислокаций локальный ток растворения становится пропорциональным ехр [пАф° (х)/Ь], поскольку величина деформационного изменения локального стандартного потенциала возрастет в п раз.

Порядок величины экспериментально найденного деформационного изменения работы выхода электрона 0,1—0,15В [89] находится в согласии с приведенным выше расчетом (см. п. 4, стр. 95).

Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же," как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии: идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически «гомогенной» поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и Др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [54]. На рис. 59 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (232) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностатической поляризации в пределах тафелевских участков. , Из соотношения (229) видно, что изменение стационарного {Потенциала вследствие деформации электрода не является однозначной функцией термодинамического состояния металла (обу-;словливающего анодное поведение) из-за участия катодного про-щесса. Поэтому _выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляризации до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поляризационной кривой). Измеренные таким способом значения потенциала при гальваностатической поляризации или плотности тока при потенциостатической поляризации могут использоваться для

Вследствие тождественности деформационного сдвига потенциала нулевого заряда и деформационного изменения работы выхода электрона проанализируем нелокальные явления на примере измерения КРП. Интенсивность потока термоионной эмиссии характеризуется формулой Ричардсона:

Выражение для ? (ю) зависит от топографии деформации трубопровода, т. е. от топографии распределения деформационного изменения электродного потенциала металла:

Вид функции Ё (к) определяется физико-механическим состоянием металла в каждой точке, выражающимся величиной деформационного изменения стандартного потенциала, которая исследовалась в предыдущих главах.

обусловленного ненулевым кинетическим давлением вследствие энгармонизма, и процесса, обусловленного симметричными силами взаимодействия атомов. Первый процесс дает термоупругие эффекты, но связан с малыми энергиями ангармонических членов колебательного спектра теплового движения атомов, второй — главным образом ответствен за механические и прочностные свойства кристаллов, а потому связан с большими энергиями. При наложении обоих процессов сочетаются эффекты разного порядка значимости. Сообразно размерам энергетических вкладов этих эффектов при определении деформационного изменения термодинамического потенциала тела в результате всестороннего сжатия или растяжения следует пренебречь термоупругостью как эффектом более высокого порядка.

В случае образования плоских скоплений из п дислокаций локальный ток растворения становится пропорциональным ехр [п Аф° (х)/Ь], поскольку величина деформационного изменения локального стандартного потенциала возрастает в п раз.

Уменьшение работы выхода электрона, обусловленное пластической деформацией и образованием дефектов структуры широко исследовалось экспериментально. Порядок величины найденного деформационного изменения работы выхода электрона 0,1 — 0,15 В [97] находится в согласии с приведенным выше расчетом.

Возможность практического использования полученного соотношения для определения деформационного изменения тока коррозии обосновывается так же, как и в известном методе снятия реальных поляризационных кривых для определения скорости коррозии металла на основе кинетической теории коррозии: идеальные поляризационные кривые, определяющие стационарный потенциал и ток коррозии, рассматриваются как продолжение тафелевских участков реальных поляризационных кривых. Это, очевидно, справедливо для электрохимически «гомогенной» поверхности, но также может быть принято для технических металлов (железа, никеля, свинца и др.), поскольку наблюдалось удовлетворительное совпадение результатов, полученных измерением скорости коррозии непосредственно по убыли массы и расчетом по поляризационным кривым [60]. На рис. 66 реальные поляризационные кривые показаны сплошными линиями. Для практического расчета скорости коррозии в формулу (245) следует подставлять величины сдвигов потенциалов, определенные сечением реальных анодных и катодных поляризационных кривых для произвольно выбранного значения плотности тока гальваностатической поляризации в пределах тафелевских участков.

В то время как одни двойники увеличивались в размерах, другие, достигнув предельной длины, исчезали вследствие механохимического растворения (сглаживания) деформационного микрорельефа; с течением времени исчезали все линии двойников, а также и след накола. Одновременно с ростом наиболее активных линий и исчезновением менее активных вблизи накола возникали выстроен-

Рис. 40. Механохимическое растворение (сглаживание) деформационного микрорельефа и вновь возникшие двойники — светлые полосы. хЗЮО

Ф — угол между осью образца и направлением скольжения. При заданной величине 0 вероятность развития скольжения выше для тех преимущественных систем скольжения, где фактор ориентации cos 0 cos ф имеет наибольшее значение. Следовательно, величина растягивающего напряжения, необходимого для обеспечения скольжения в различно ориентированных зернах поликристалла, различна в зависимости от кристаллографической ориентации зерна относительно оси образца, и поэтому при or = const в разных зернах скольжение будет развиваться по различным системам кристаллографических плоскостей (преимущественно вдоль базисных плотноу пакованных), а в отдельных неблагоприятно ориентированных зернах может вообще не развиваться. С этим связана неравномерность распределения деформационного микрорельефа на поверхности поликристаллического материала, особенно при относительно небольших степенях деформации, когда скольжение развивается в ограниченной системе плоскостей, расположенных под различными углами к поверхности зерен. Увеличение степени деформации способствует более равномерному распределению микрорельефа между различными зернами как вследствие вовлечения новых систем скольжения, ранее не действовавших из-за неблагоприятной ориентировки и недостаточности «стартового» напряжения, так и вследствие фраг-

Неравномерность распределения деформационного микрорельефа и соответственно запасенной энтальпии деформации в разных точках вызывает значительную деформационную микроэлектрохимическую гетерогенность в масштабах как одного зерна 1, так и всей поверхности вследствие действия кристаллографического фактора. На электрохимическую неоднородность, обусловленную различиями в кристаллографической ориентации зерен, вышедших на поверхность металла, накладывается деформационная микроэлектрохимическая неоднородность, вызванная неравномерным распределением деформации внутри зерен и между различными зернами, имеющими различную ориентацию относительно направления приложенного напряжения.

В то время как одни двойники увеличивались в размерах, другие, достиг- i нув предельной длины, исчезали вследствие механохимического растворения I (сглаживания) деформационного микрорельефа; с течением времени исчезали все линии двойников, а также и след накола. Одновременно с ростом наиболее активных линий и исчезновением менее активных вблизи накола возникали выстроенные группы движущихся петель полных дислокаций, а также ямки травления вдоль исчезнувших при растворении двойниковых линий; число дислокационных петель увеличивалось одновременно с увеличением их размеров и протяженности групп в длину и ширину.

Рис. 44. Механохимическое растворение (сглаживание) деформационного микрорельефа и вновь возникшие двойники — светлые полосы, Х3100

При заданной величине сг вероятность развития скольжения выше для тех преимущественных систем скольжения, где фактор ориентации cos 6 cos ф имеет наибольшее значение. Следовательно, величина растягивающего напряжения, необходимого для обеспечения скольжения в различно ориентированных зернах поликристалла, различна в зависимости от кристаллографической ориентации зерна относительно оси образца, и поэтому при а = — const в разных зернах скольжение будет развиваться по различным системам кристаллографических плоскостей (преимущественно вдоль базисных плотноупакованных), а в отдельных неблагоприятно ориентированных зернах может вообще не развиваться. С этим связана неравномерность распределения деформационного микрорельефа на поверхности поликристаллического материала, особенно при относительно небольших степенях деформации, когда скольжение развивается в ограниченной системе плоскостей, расположенных под различными углами к поверхности зерен. Увеличение степени деформации способствует более равномерному распределению микрорельефа между различными зернами как вследствие вовлечения новых систем скольжения, ранее не действовавших из-за неблагоприятной ориентировки и недостаточности «стартового» напряжения, так и вследствие фрагментации зерен. При этом значительно проявляется рельеф границ зерен, связанный с линейными смещениями и разориентировкой границ.

Неравномерность распределения деформационного микрорельефа и соответственно запасенной энтальпии деформации в разных точках вызывает значительную деформационную микроэлектрохимическую гетерогенность как в одном зерне 1, так и всей

4. Оценка деформационного микрорельефа, возникающего на поверхности металлических образцов, методом стереофотограмметрии 255

Микроструктурные исследования показали, что усталостное разрушение биметаллической композиции как при комнатной температуре, так и при 800° С имеет сложный характер — в отсутствие четко выраженного деформационного микрорельефа в науглероженной зоне стали Х18Н10Т, а также в обезуглероженной зоне основного металла интенсивное дробление зерен и разрыхление поверхности сопровождаются образованием многочисленных очагов разрушения. При этом дробление происходит раньше, чем начинается развитие главной транскристаллической или межкристаллической трещины, приводящей к потере несущей способности слоя стали СтЗ. Межслойная поверхность раздела служит эффективным барьером для усталостной трещины,, так как напряженное состояние в вершине движущейся трещины резко изменяется. Магистральная трещина распространяется в плакирующем слое, а при слиянии ее с трещиной материала основы образец ломается.

Кинетика изменения деформационного микрорельефа в зонах сопряжения разнородных слоев биметаллов была изучена автором и А. И. Тана-новым с помощью установки ИМАШ-20-69 при исследовании образцов трехслойной композиции Х18Н10Т + кремнистое железо + Х18Н10Т, изготовленной способом сварки взрывом с последующей прокаткой на необходимую толщину. Конечная толщина образцов составляла 2 мм. Полученная слоистая плакированная композиция оказалась весьма удачным модельным материалом для ряда многослойных сочетаний металлов с о. ц. к. и г. ц. к. решетками.




Рекомендуем ознакомиться:
Деформирования существенно
Деформирование материала
Деформирование происходит
Деформированию материала
Деформированных состояниях
Дальнейшем перемещении
Деформированному состоянию
Деформируемый титановый
Деформируемых алюминиевых
Дальнейшем повышении
Деформируемого материала
Деформируются одинаково
Декартовых координатах
Декоративными свойствами
Декрементом затухания
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки