Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Деформации напряжение



будет деформироваться пластически, поскольку деформация матрицы, соответствующая пределу текучести, меньше деформации разрушения волокна. По существу, волокно как бы заключено в пластичную оболочку длиной 2гу, что показано схематически на рис. 15. Согласно механизму Олстера и Джонса [31], вся энергия волокна в зоне пластической деформации входит в вязкость разрушения композита. Их аргументация вкратце сводится к тому, что энергия деформации в данной области возвращается в систему неполностью и действует противоположно удлиненной «оболочке» матрицы. Авторы пришли к выводу, что в первом приближении вклад в вязкость эквивалентен энергии упругой деформации, накопленной на отрезке волокна, заключенном в пластической зоне к моменту разрушения волокна. Таким образом, волокно в пластичной оболочке находится в состоянии почти равномерного растяжения, и энергия деформации составляет

Показано, что, если распространяющаяся в композите трещина пересекает волокна упрочнителя, вязкость разрушения увеличивается тем больше, чем больше волокна отслаиваются от матрицы. Значит, из соображений повышения вязкости разрушения предпочтительной является слабая поверхность раздела. Однако при распространении трещины в матрице параллельно волокнам предпочтительна прочная поверхность раздела — это позволяет предотвратить разрушение по поверхности раздела, связанное с малыми затратами энергии. Были отмечены и другие случаи; так, при распространении трещины перпендикулярно волокнам высокая вязкость разрушения может быть обусловлена несколькими механизмами. При действии одного из них — вытягивания волокон — вязкость разрушения определяется силами трения и длиной вытянутого из матрицы отрезка волокна. Высокая вязкость разрушения может быть получена и в композитах, в которых не происходит ни отслаивания, ни вытягивания волокон. Так, в системе бор — алюминий вязкость разрушения зависит в основном от энергии деформации, накопленной волокном в пластической зоне деформации композита непосредственно к моменту разрушения волокна. Вязкость разрушения ориентированных композитов, как правило, слабо зависит от вязкости разрушения матрицы. Исключение представляет случай, когда поверхность раздела прочна, а трещина распространяется параллельно волокнам: в этих условиях вязкости разрушения композита и материала матрицы сопоставимы. При достаточно высокой объемной доле упрочнителя и слабой поверхности раздела вязкость разрушения определяется поверхностью раздела. Вязкость разрушения композитов, армированных ориентированным в нескольких направлениях упрочнителем, зависит, главным образом, от тех волокон, которые расположены поперек трещины и разрушение которых необходимо для дальней-

Анализ экспериментального материала, полученного на сталях ферритного, перлитного и аустенитного классов, и никелевых сплавах показал, что если величина пластической деформации, накопленной до агонийной стадии разрушения, >2%, то длительная прочность образцов с кольцевыми подрезами средней жесткости (теоретический коэффициент концентрации напряжений Л"т=4%) не ниже соответствующей прочности гладких образцов — материал не чувствителен к надрезу. Следовательно, в условиях дли-

При таком подходе определяющей является обычно величина энергии деформации, накопленной критическим объемом и зависящей от вида кристаллической решетки, химического состава, физико-механических свойств. Основное затруднение в применении критериев этого вида заключается в необходимости определения той части энергии деформирования, которая расходуется непосредственно на создание повреждения в материале, определяющего долговечность.

в модели под нагрузкой с деформациями, снявшимися после удаления нагрузки. Упругие константы в момент ^ представляют собой обычные мгновенные упругие константы. Упругие константы в момент tz были вычислены с использованием общей (упругой и неупругой) деформации, накопленной к этому моменту времени. Необходимо обратить внимание и на то, что величина оптической постоянной полосы по деформациям оставалась неизменной, пока модель была под нагрузкой.

а другая превращается в потенциальную энергию упругой деформации. Во второй фазе удара боек отскакивает благодаря потенциальной энергии упругой деформации, накопленной в первой фазе процесса, на высоту ft.

При температуре испытания 650° С, так же как и при 450° С, вид нагружения определяет характер изменения деформационных циклических характеристик (рис. 2.15). В условиях моногармонического нагружения при малых временах нагружения (больших уровнях напряжений) разупрочняющее влияние температуры, несмотря на большую величину деформации, проявляется в большей мере, и, наоборот, при меньших уровнях нагрузки (деформации), обусловливающих и большее время нагружения, процессы структурных изменений материала оказывают большее влияние. В результате при меньших напряжениях более интенсивно и более длительное время может наблюдаться уменьшение ширины петли гистерезиса (см. рис. 2.15). При больших амплитудах напряжений упрочнение быстро сменяется разупрочнением При этом для малых уровней нагрузки (разрушающее число циклов N ^> 103) накопление деформаций невелико и ограничивается, как правило, величиной деформации, накопленной в первом цикле, а на стадии окончательного разрушения, когда материал сильно поврежден, в отдельных случаях проявляется склонность к накоплению деформации в сторону сжатия. Однако это накопление незначительно (см. рис. 2.15).

-i- 0,30. Соотношение частот действующих напряжений, зависящее от времени выдержки, которое в этой серии испытаний, как и для трапецеидального цикла, составляло 5 мин, было равно /г/1 = 80. Из полученных данных видно, что в сравнении с аналогичными данными для одночастотного нагружения (см. рис. 4.8. а) наличие высокочастотной составляющей при одних и тех же уровнях амплитуд максимальных напряжений уменьшает циклическую пластическую деформацию на 30—40%, что, по-видимому, связано со стимулированием высокочастотной составляющей циклической деформации процесса деформационного старения, и при этом не однозначно сказывается на упрочнении и разупрочнении материала. Так, при а„ = 34,4 кгс/мм2 величина бЛ со среднего значения при одночастотном нагружении 0,9 —1.0% уменьшается до 0,6%, а период упрочнения увеличивается с n/N = 0,03 до n/N = 0,25. Повышение максимальных напряжений до аа = = 37,0 ч- 39,2 кгс/мм2 также уменьшает при двухчастотном режиме среднюю величину 6(*> с 1,5 до 1,0%, но интенсивность разупрочнения материала при дальнейшем нагружении повышается. Характер одностороннего накопления пластической деформации е^ в рассматриваемых условиях также изменяется. Если при одночастотном нагружении величина е^ на протяжении почти всей долговечности остается на уровне деформации, накопленной при исходном нагружении, то при двухчастотном режиме для всех исследованных уровней амплитуд напряжений обнаруживается склонность материала к одностороннему накоплению е^. Величина деформации циклической ползучести ет, накапливаемая в процессе выдержек, в рассматриваемых условиях оказалась малой, по-видимому, из-за слабого проявления в материале при этой температуре температурно-временных эффектов. Влияние накопленных деформаций при этом проявляется лишь в изменении характера сопротивления деформированию, что выражается в уменьшении циклической пластической деформации и в увеличении односторонне накопленной деформации, а также в более интенсивном протекании процессов упрочнения и разупрочнения соответственно на начальной и завершающей стадиях нагружения. Повышение температуры испытаний до 650° С коренным образом, как и при нагружении с треугольной и трапецеидальной формами циклов, изменяет кинетику деформаций. Это также связано с активизацией в этих условиях процессов ползучести и деформационного старения. На рис. 4.25 приведены данные по кинетике деформаций, полученные при двухчастотном нагружении (650° С), как и для t = 450° С по режиму, представленному на рис. 4.20, б. Амплитуда максимальных напряжений ста при этом была изменяемым параметром, а амплитуда наложенных напряжений сохранялась постоянной и составляла ст„2 = 6,5 кгс/мм2. Тем самым охватывался диапазон соотношений амплитуд высокочастотной и низкочастотной составляющих aa2/(ial от 0,57 до 0,30, а соотношение частот при времени выдержки 5 мин и времени низкочастотного цикла 11 мин составляло /2//i = 80.

В поведении металлов при оценке их свойств по разным критерям есть много общего, но есть и существенные отличия. При приложении нагрузки к образцу с трещиной в условиях высокой температуры возникает мгновенная пластическая деформация (деформация мгновенной пластичности). Если эта деформация не является критической, то для последующего разрушения необходимо протекание определенной деформации ползучести за счет упругой деформации, накопленной в образце под действием приложенной силы. При этом происходит перестройка поля упругопластических деформаций у вершины трещины, определяемая скоростями пластических деформаций ползучести металла в разных зонах и протекающая во времени. Лишь после протекания у фронтовых зерен металла того уровня критической пластической деформации ползучести, которая соответствует возникшей скорости пластической деформации, наблюдаемой на гладких образцах при испытании их на ползучесть до разрушения, трещина продвинется на несколько зерен, что приведет к некоторому возрастанию скорости деформации в зонах, оказавшихся ближе к вершине трещины. Таким образом, общее при испытании гладкого образца и образца с трещиной заключается в достижении определенного уровня критической деформации ползучести металла у вершины трещины; различие состоит в том, что у гладкого образца накопление критического уровня деформации происходит в основном при постоянной скорости ползучести, в то

Это выражение в соответствии с (6.9) можно приравнять полной энергии деформации, накопленной в результате действия лишь о^. Таким образом,

где «1 — полная удельная энергия деформации, накопленная в результате действия 01. Аналогичные выражения для полной удельной энергии деформации, накопленной в результате действия а2 и ст3, можно соответственно записать в виде

В приведенных примерах однородной деформации напряжение для всех отдельных элементов данного сечения S (или S') одинаково. Поэтому мы могли говорить о напряжении для всей площадки конечных размеров (5' или S). Однако при неоднородной деформации напряжение для отдельных малых элементов площадки, вообще говоря, различно. В таком случае, как уже указывалось, для определения напряжения нужно брать бесконечно малые площадки dS. Положение такой бесконечно малой площадки можно определять одной точкой, принадлежащей этой площадке, и ориентировкой площадки. Для каждой точки тела существует бесчисленное множество таких бесконечно малых площадок, различным образом ориентированных. Поскольку напряжение для этих различных площадок зависит от их ориентировки, то напряжение, отнесенное к определенной площадке, еще не характеризует тех сил, которые действуют на любую площадку в данной точке. Только в том случае, когда могут быть определены напряжения для всевозможных малых площадок, лежащих в данной точке тела, напряженное состояние в этой точке будет полностью определено.

ческого течения. , Последнее, очевидно, обусловлено изменением механизма деформации в наноструктурных металлах, когда наряду с действием внутризеренного дислокационного скольжения развивается зернограничное проскальзывание (ЗГП) уже при относительно низких температурах [61, 327]. На рис. 5.^приведена диаграмма «напряжение-деформация» для такого же образца Си, подвергнутого дополнительному 3-минутному отжигу при 473 К. Такой короткий отжиг не приводит к заметному росту зерен, однако ведет к возврату дефектной структуры их границ, выраженному в резком уменьшении внутренних напряжений [327]. Видно, что несмотря на аналогичный размер зерен, имеется весьма существенная разница деформационного поведения в этих двух состояниях. После кратковременного отжига вид кривой становится похожим на вид кривой, соответствующей крупнокристаллической Си. Этот результат очень важен и показывает, что на прочностные свойства наноструктурных материалов может влиять не только средний размер зерна, но и дефектная структура границ зерен.

Следует отметить, что Си после РКУ-прессования может показывать и относительно низкую пластичность при растяжении (10%) [326]. По-видимому, это связано с высокой долей малоугловых границ зерен присутствующих в образцах после определенных режимов РКУ-прессования. В работе [61] испытывали Си со средним размером зерен 210 нм при сжатии. Испытание проводилось при комнатной температуре с начальной скоростью деформации 1,4 х 10~3с~1. Было также обнаружено, что деформационные кривые для Си с различным размером зерен различаются по форме. Типичными особенностями кривой деформации сжатием в случае наноструктурной Си являются: высокое напряжение течения, равное 390 МПа, значительное начальное деформационное упрочнение в узком интервале степеней деформации (примерно 5 %) на начальной стадии деформации, практически полное отсутствие деформационного упрочнения на последующей стадии деформации. Напряжение течения на второй стадии составило около 500 МПа. В то же время пластичность наноструктурной Си была высока. Образцы при сжатии не разрушались даже после максимальной деформации, которая в данном эксперименте равнялось 83%.

Размер зерна в наноструктурной Си, исследованной в работе [367], намного меньше, чем типичный размер ячеек равный 0,5 мкм в поликристаллической Си, подвергнутой усталостным испытаниям [369, 370, 375]. Это говорит об ограниченной применимости данной концепции для исследования усталостного поведения наноструктурных материалов. Более того, в работе [377] показано, что в режиме низких амплитуд размер зерна меньше критического значения, равного 85 мкм, не оказывает влияния на напряжение циклической деформации. Напряжение насыщения для наноструктурного образца, отожженного при 773 К, соответствует значению, характерному для Си поликристаллов, испытанных при той же самой амплитуде пластической деформации [377]. В отличие от вышеупомянутых закономерностей в случае, когда размер зерна оказывается значительно меньше критического, наблюдается значительно более высокое напряжение насыщения.

При исследовании пластичности методом скручивания используются сплошные образцы, для определения сопротивления деформации (напряжение сдвига) применяются сплошные и трубчатые образцы.

Величина момента кручения зависит от распределения сдвигового напряжения и в неявном виде — от кривой течения 0(е, е, Т), которую как раз и определяют при испытаниях. Кроме того, при скручивании образцов в них появляется продольное напряжение, которое в зависимости от материала, температуры испытаний и степени деформации может быть растягивающим или сжимающим. В работах Эльфмарка это явление связывается с кинетикой динамической рекристаллизации металла при горячей деформации и изменение знака осевого напряжения приблизительно совпадает с. максимумом на кривых

Таким образом, при распространении плоской упруго-пластической волны в течение времени одного порядка с временем релаксации сдвиговых напряжений напряженное состояние за фронтом волны является существенно неустановившимся и определяется выражениями (4.15) и (4.17), учитывающими кинетику развития пластического сдвига. При времени распространения волны от контактной поверхности, намного большем, чем время релаксации, состояние материала близко к равновесному и при расчете распространения волны можно не учитывать кинетику развития сдвиговой пластической деформации. Напряжение в плоскости фронта плоской упруго-пластической волны может быть определено соотношением (4.12) по величине объемной деформации и статической величине сопротивления сдвигу, соответствующей интенсивности волны и эквивалентной величине деформации.

В сеточных П. релаксац. св-ва выражают-? ся в релаксации напряжения, высокоэластич. последействии, механич. потерях и динамич. св-вах, отличных от статических. При заданной деформации напряжение с течением времени падает. Если к резине приложена постоянная нагрузка или периодич. нагрузка с постоянной амплитудой, то величина деформации возрастает с течением времени. В первом случае наблюдается статический, а во втором — динамич. крип (высокоэластич. последействие). Как в процессе релаксации напряжений, так и в процессе последействия модуль высокой эластичности уменьшается, стремясь к равновесному Ясс .

Существенную долю в общем балансе энергии, рассеиваемой механизмом с упругими связями в процессе его колебаний, занимает работа сил внутреннего трения в материале упругих связей, или, как ее называют, гистерезис-ные потери. Наличие гистерезисных потерь объясняется особенностями диаграммы многократного нагружения и раз-гружения практически любого машиностроительного материала. Подобная диаграмма представлена на рис. 3.17, а. Как на ней показано, при одной и той же величине деформации напряжение оказывается несколько большим, когда оно растет, чем когда оно убывает. Такая картина остается справедливой даже в том случае, если максимальное напряжение не превосходит предела пропорциональности. Полученная таким образом замкнутая кривая называется петлей гистерезиса. Площадь, ограниченная петлей гистерезиса, характеризует количество энергии, рассеиваемой единицей объема материала за один цикл. При повторном растяжении

В некоторой зоне .отпечатка получаются пластические деформации. Напряжение по её наружному контуру равно пределу текучести Оу.

При уменьшении длины отрезаемого куска окружная скорость ножей v в момент реза будет больше скорости поцачи полосы v0. Если в этом случае в качестве подающих роликов летучих ножниц используется последняя клеть непрерывного стана, то эта разность скоростей ножей и металла в момент реза большого значения не имеет. Полоса, захваченная с одного конца ножами и зажатая с другого конца валками рабочей клети, будет подвергнута некоторой деформации, напряжение от которой при правильно сконструированных ножницах не будет превышать предела упругости материала полосы [см. уравнение (91)].




Рекомендуем ознакомиться:
Деформации предшествующей
Дальнейшая разработка
Деформации принимает
Деформации происходят
Деформации радиационного
Дальнейшему уменьшению
Деформации рекомендуется
Деформации снижается
Деформации соответствующая
Деформации сопротивление
Деформации срединной
Деформации существует
Деформации трубопроводов
Деформации вызывающие
Деформации возникают
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки