Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Деформации кристаллической



Именно дислокации являются основной причиной пластической деформации кристаллических тел (ковки, штамповки и прокатки). Начавшаяся пластическая деформация, сопровождающаяся в конечном счете изменением формы и размеров объекта, резко затормаживает рост напряжений, которые не могут достигнуть теоретического уровня в процессе всей деформации вплоть до разрушения.

В роботе для объяснения возникновения днсошштиваых структур типа вихревых и условий их существования предложена модель пластической деформации кристаллических твердых тел в условиях высоких гидростатических давлений, основанная на щигдстпвллвият синергетики с привлечением теории еист*»». В данной модели воли>

Таким образом, характер и кинетика проявления структурных и энергетических особенностей пластической деформации кристаллических материалов вблизи поверхности могут существенно изменяться на различных стадиях деформационного упрочнения, постепенно переходя от более облегченных параметров пластического течения к более затрудненным, к барьерному эффекту поверхности.

Различные используемые модели материала [32] являются частными случаями представленной модели. Так, упругая ячей-ка используется для описания деформации кристаллических материалов при напряжениях, не превышающих предел текучести.

Значительное развитие процесса пластической деформации кристаллических тел возможно только путём скольжения.

Таким образом, характер и кинетика проявления структурных и энергетических особенностей пластической деформации кристаллических материалов вблизи поверхности могут существенно изменяться на различных стадиях деформационного упрочнения, а также в зависимости от условий деформации, вида нагружения, состояния поверхности образца, типа среды, постепенно переходя от

Рнс. ^8.7. Схема деформации кристаллических (а) я аморфных (б) металлов:

Вид диаграмм деформации кристаллических и аморфных металлов и изменения формы образца при растяжении вплоть до разрушения схематично показан на рис. 8.8. В случае кристаллических металлов обычно наблюдается значительное деформационное упрочнение, при этом после достижения предела текучести деформация распространяется за счет одновременного протекания скольжения в различных частях образца. При напряжениях, превышающих предел текучести, пластическая деформация и необходимое для ее протекания напряжение существенно возрастают — происходит упрочнение. После достижения максимума напряжений в образце происходят явления, вызывающие локальное сужение (образование шейки) и уменьшение напряжения вплоть до разрушения образца. В случае же аморфных металлов, как материалов, не претерпевающих деформационного упрочнения, максимальное напряжение, достигаемое с ростом деформации, равно пределу текучести, после чего происходит скольжение путем перемещения групп атомов в направлении максимального касательного напряжения. Однако, поскольку при скольжении деформационное упрочнение отсутствует, деформация начинается и развивается в одной и той же части образца, а именно в плоскости максимального Касательного напряжения. В этой же плоскости происходит и разрушение. Вследствие крайне неоднородной по образцу деформации диаграммы де-

Принцип структурного соответствия (Конобеевский, Баррет, Данков) заключается в том, что превращение в анизотропной среде развивается так, чтобы конфигурация атомов исходной твердой фазы близко сохранялась и в новой фазе. При этом кристаллическая решетка последней сопрягается с кристаллической решеткой исходной фазы подобными кристаллографическими плоскостями с малым различием в параметрах. Возможность ориентированного роста определяется соотношением между величиной энергии деформации AFE, необходимой для приведения новой фазы к размерному соответствию, и выигрышем в поверхностной энергии A-Fg. Если работа образования трехмерного зародыша независимо ориентированной структуры будет больше, чем энергия деформации, то будет иметь место сопряжение решеток. При этом новая или исходная структура будет деформирована. В противном случае, т. е. когда энергия деформации кристаллических решеток слишком велика, энергетически выгодней образование независимо ориентированного зародыша.

Схема работы источников дислокационных петель и взаимодействие дислокаций с препятствиями позволяют подойти к объяснению микромеханизма неупругой деформации кристаллических тел. Она кинематически невозможна при растяжении или сжатии кристаллической решетки и возникает, как правило, при относительном скольжении атомных плоскостей под действием касательных напряжений. Это скольжение происходит преимущественно по направлениям, в которых расстояния между атомами в кристаллической решетке являются наименьшими, так как сила Пайерлса т* в таком направлении является наименьшей. Совокупность плоскости и направления скольжения называют системой скольжения.

Линейные дефекты характеризуются малыми размерами в двух измерениях, но имеют значительную протяженность в третьем измерении. Наиболее важный вид линейных дефектов — дислокации (лат. dislocation — смещение). Теория дислокаций была впервые применена в середине тридцатых годов XX века физиками Орованом, Поляни и Тейлором для описания процесса пластической деформации кристаллических тел. Ее использование позволило объяснить природу прочности и пластичности металлов. Теория дислокаций дала возможность объяснить огромную разницу между теоретической и практической прочностью металлов.

Особый интерес представляют условия образования твердых растворов замещения, в которых железо играет роль растворителя. И. И. Корнилов установил связь между растворимостью элементов в железе и их ионными диаметрами: атомный диаметр растворимого элемента должен отличаться от атомного диаметра железа не более чем на 8—15%. Только при этих условиях не происходит значительной деформации кристаллической решетки растворителя и изменения характера связи. Если это различие не превышает 8%, то образуются непрерывные твердые растворы; если различие составляет 8—15%, то образуются ограниченные твердые растворы. Так, например, хром, с атомным диаметром, отличающимся от железа не более чем на 1,5%, дает с ним непрерывный ряд твердых растворов; молибден, отличающийся от железа по атомному диаметру на 10%, ограниченно растворяется в железе; еще меньше растворяется вольфрам и т. д. Отмеченные закономерности в отношении растворимости элементов в железе распространяются и на некоторые другие элементы.

Процессы деформации кристаллической структуры, зарождения и развития дефектов сопровождаются изменением электрофизических свойств металла конструкций. Следовательно, каждая стадия процесса деформирования-разрушения металла оборудования в условиях действия сжимающих и растягивающих усилий, температуры, магнитного поля может быть охарактеризована совокупностью электрофизических параметров, значения которых могут быть измерены. Поэтому для решения проблемы оценки текущего состояния и прогнозирования остаточного ресурса конструкций могут быть использованы связи между электрофизическими свойствами и определяющими уравнениями твердого тела. Установление этих связей позволяет оценивать текущие механические свойства элементов конструкций по измеренным электромагнитным параметрам, а затем, используя расчетный аппарат механики разрушений, осуществить прогноз долговечности любого элемента конструкции. Электромагнитные методы, в отличие от других физических методов неразрушаюшего контроля, направленных на поиск развитых дефектов, позволяют осуществлять раннюю диагностику, выявляя участки металлических конструкций, наиболее предрасположенных к повреждениям.

Процессы деформации кристаллической структуры, зарождения и развития дефектов сопровождаются изменением электрофизических свойств металла конструкций. Следовательно, каждая стадия процесса деформирования-разрушения металла оборудования в условиях действия сжимающих и растягивающих усилий, температуры, магнитного поля может быть охарактеризована совокупностью электрофизических параметров, значения которых могут быть измерены. Поэтому для решения проблемы оценки текущего состояния и прогнозирования остаточного ресурса конструкций могут быть использованы связи между электрофизическими свойствами и определяющими уравнениями твердого тела. Установление этих связей позволяет оценивать текущие механические свойства элементов конструкций по измеренным электромагнитным параметрам, а затем, используя расчетный аппарат механики разрушений, осуществить прогноз долговечности любого элемента конструкции. Электромагнитные методы, в отличие от других физических методов неразрушаюшего контроля, направленных на поиск развитых дефектов, позволяю! осуществлять раннюю диагностику, выявляя участки металлических конструкций, наиболее предрасположенных к повреждениям.

ческих свойств ВеО происходит в результате образования газов при облучении и анизотропной деформации кристаллической решетки. Это

Один из способов избыточного получения точечных дефектов в металле состоит в резком охлаждении его (закалке). Другой способ создания избыточных дефектов заключается в сильной деформации кристаллической решетки, например ковкой или прокатыванием. Их можно также получить в результате -бомбардировки металла атомами или частицами с высокой энергией.

За критерий структурных изменений принималась истинная (физическая) ширина линий на рентгенограмме р, которая для чистых металлов и равновесных твердых растворов является результирующей средней величины блоков и дисперсии* упругой деформации кристаллической решетки (микронапряжений) и служит характеристикой плотности содержащихся в металле дислокаций (р = ЛР2, А — константа материала).

В книге С. Е. Вяткина и др. [151] приведены данные о связи накопленной энергии с положением атомов в кристаллической решетке. Отмечается, что в первом приближении количество накопленной энергии может быть рассчитано из величины деформации кристаллической решетки облученного графита:

Рис. 18.6* Кривые изменения параметра а кристаллической решетки по глубине зоны деформации меди при трении о сталь в среде глицерина:

4. Структуру пленки изучали [37] с помощью специально разработанного метода «скользящего пучка» рентгеновских лучей. Луч направляли к поверхности под малым углом (не более 1°), что позволяло исследовать поверхностные слои толщиной 0,1—0,01 мкм. Исследования показали, что верхний слой пленки имеет значительные структурные изменения по сравнению с нижележащими слоями. За критерий структурных изменений принимали истинную (физическую) ширину линий на рентгенограммах 3, которая для чистых металлов и равновесных твердых растворов является результирующей средней величины блоков и дисперсий упругой деформации кристаллической решетки (микроискажеьий) и служит характеристикой плотности содержащихся в металле дислокаций.

Тепловое и механическое воздействия на тело приводят к изменению рис 2л расстояний между ионами и к деформации кристаллической решетки. Так как ионы в решетке взаимодействуют, главным образом, со своими ближайшими соседями, для выяснения влияния этих воздействий с качественной стороны достаточно рассмотреть поведение лишь одной пары ионов в линейной цепочке.

На упрочнение твердого раствора влияет также снижение температуры у —* а-превращения. Чем больше легирующие элементы снижают эту температуру, тем интенсивнее протекают процессы деформации кристаллической решетки и дробления блоков структурной мозаики (фазовый наклеп). Так, легирование марганцем, хромом, никелем сильно снижает температуру 7 7^- а-превращения, в результате чего значительно упрочняется твердый раствор и заметно повышается эрозионная стойкость многих сталей.




Рекомендуем ознакомиться:
Деформации поперечных
Деформации повышается
Деформации позволяет
Деформации превращается
Деформации применяют
Деформации прочность
Деформации пропорциональны
Деформации растяжением
Деформации развиваются
Деформации скольжением
Деформации соответственно
Дальнейшем целесообразно
Деформации совпадает
Деформации свариваемых
Деформации тонкостенных
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки