Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Деформация поверхностного



ее положения. Смещение заготовки из положения, определяемого установочными элементами, а значит, и смещение ее измерительной базы происходят вследствие деформаций отдельных звеньев цепи, через которые передается сила зажатия: заготовка—установочные элементы — корпус приспособления. Здесь могут быть упругие отжимы деталей и элементов приспособления, деформация поверхностных слоев металла и поверхностных неровностей (шероховатостей). Смещения заготовки могут быть осевые, радиальные, угловые.

Однако при этом не учитывалась деформация поверхностных слоев, которая определяет характер эпюры давлений неподвижных соединений и подвижных в первый период их работы.

В обобщенном виде основные положения этой теории состоят в следующем. Пластическая деформация поверхностных микрообъемов приводит к активации коррозионных процессов на этих участках, Коррозия усиливает избирательную способность напряжений, быстрее выделяет слабые места и ускоряет их развитие. Локализация коррозионных процессов приводит к образованию коррозионных повреждений, являющихся эффективными концентраторами напряжений — источниками зарождения трещин усталости. В условиях электрохимической коррозии происходит усиленное растворение металла в острие трещины вследствие работы пары: анод—острие, катод—стенка трещины. При этом коррозия значительно облегчает продвижение трещины, помогая преодолевать препятствия в виде скопления дислокаций, границ зерен и т. п.

Под схватыванием II рода понимается тот же процесс, однако •если в первом случае его причина —• интенсивная деформация поверхностных слоев, обусловленная атермической пластичностью, то во втором —• местное локальное повышение температуры.

Поверхность металла пбсле отливки покрыта пленкой из оксидов и продуктов атмосферной коррозии. При обработке металлической поверхности резанием для снятия этой „литейной корки" свойства поверхностного слоя металла изменяются на некоторую глубину вследствие пластической деформации - наклепа. Наклепанный слой обладает несколько иными физико-химическими свойствами, чем необработанная поверхность. Своеобразные и глубокие изменения поверхности происходят также при механической полировке ее различными абразивами. В этом случае наблюдаются пластическая деформация поверхностных слоев, течение металла и заполнение, неровностей. В принципе, любая обработка поверхности приводит к заметному изменению свойств наружного слоя. Поверхность металла покрыта оксидной пленкой, которая при нарушении ее целостности довольно быстро восстанавливается. Установлено, что свежеобразованная (по месту излома или зачистки) под раствором электролита поверхность металла химически весьма активна, но эта активность очень быстро (по мере восстановления пленок) утрачивается [66]. 10 •

Анализ рентгенограмм, полученных с образцов, не подвергавшихся нагревам, показал, что деформация поверхностных слоев после различных видов механической обработки неодинакова. Это различие состоит в неодинаковой интенсивности деформаций по глубине поверхностного слоя, различной глубине деформированного слоя и др. Передние линии на рентгенограммах независимо от вида механической обработки являются сплошными, несколько размытыми. Причем если изучаемые методы и режимы рассматри-

Наибольшее применение взрыв находит при штамповке и сварке, причем сварка может сочетаться с упрочнением. Получение композитных плакированных листовых материалов — основная область применения сварки взрывом. Листовые заготовки из стали, например Ст. 3, могут быть плакированы с обеих сторон листами нержавеющей стали Х18Н10Т, причем толщина наружных слоев составляет всего 10—20% толщины среднего слоя. Листы для сварки укладывают пакетом, сверху насыпается слой взрывчатого вещества, взрыв которого осуществляется от детонатора. Под действием высокого давления происходит пластическая деформация поверхностных слоев соединяемых листов, они разогреваются и сплавляются. Под действием ударной волны зона соединения приобретает, волнистость, прочность соединения оказывается исключительно высокой. Трехслойный лист после закалки и отпуска обладает таким сочетанием механических свойств, которое невозможно получить у каждого из отдельных материалов. Нержавеющая сталь, допустим, имеет предел прочности 60 кгс/мм2, в композиции с более прочной сталью ЗОХГСА (а зависимости от соотношения толщины листов), предел прочности может быть 140—150 кгс/мм2, относительное удлинение при этом снизится и вместо 30% составит 7 или 10%.

3. ДЕФОРМАЦИЯ ПОВЕРХНОСТНЫХ СЛОЕВ В РЕЖИМЕ ИЗБИРАТЕЛЬНОГО ПЕРЕНОСА

3. Деформация поверхностных слоев в режиме избирательного переноса (В. Г. Пинчук)..................... 27

— Деформация поверхностных слоёз при закреплении 7—14

Деформация поверхностных слоев при закреплении деталей машин 7—14

деформация поверхностного слоя полимера и повышение температуры Д7 в зоне трения выше температуры плавления кристаллической фазы и эндотермические фазовые переходы (ЭФП) аморфизации полимерной матрицы и образования жидкокристаллической мезофазы со слоистой структурой термотропных ЖК;

Вопрос износостойкости металлорежущего инструмента — один из основных в области металлообработки. Исследованию закономерностей его изнашивания, физике процессов, определяющих интенсивность износа, влиянию на износ различных факторов и в первую очередь режимов резания, выбору рациональной геометрии инструмента посвящена обширная литература [110]. В зоне резания протекают разнообразные процессы, такие как пластическая деформация поверхностного и срезаемого слоя, возникновение высокотемпературных зон, адгезионные процессы (образование нароста), фазовые превращения и др.

где Р — действующая нагрузка, кг (0,5 — вес площадки для грузов, кг); I — расстояние между опорными призмами, мм; W — момент сопротивления сечения рабочей части образца, равный 1/в bh2; Ъ — ширина рабочего сечения образца, мм; h — толщина образца, мм. По измеренным остаточным перемещениям визирной риски Н удлинителя вычисляется остаточная деформация поверхностного волокна образца (в мм)

1—изотермическая закалка (ia—1 000°С), <из= 300°С); 2 — термомеханическая изотермическая обработка (fa= *деф= ! 000°С, е = = 40%, *из= 300°С); 3—регулируемое термопластическое упрочнение (*а= *деф = = 1 000°С, Е,= 40%, Т,= 15 С, 62=18%, (из= 300°С); 4 — изотермическая закалка (ta= 850°С, гиз= 300°С); оизг— изгибающее напряжение; еост— относительная остаточная деформация поверхностного волокна; (а, ta3, *деф—температуры соответственно аустенити-вации, изотермической выдержки, деформации; е, EJ, е2— степени деформации; т,— междеформационная пауза.

На установке можно испытывать образцы при изгибе, растяжении и сжатии. Для измерения силы удара в одной из Опор устанавливают пьезокварцевый датчик. Прогиб образца в центральной части измеряют с помощью специальной приставки, состоящей из фотоэлемента, лампы освещения и запирающей иглы. Действительные напряжения на поверхности образца в этом случае остаются неизвестными, так как трудно определить потери энергии однократного удара на местные смятия и контактные напряжения соударяющихся деталей из-за неучитываемых неупругих деформаций, возникающих в материале в процессе повторно-переменного нагружения. Поэтому в работе •[162] определена общая деформация поверхностного слоя материала образца, и эта общая деформация разделена на упругую и неупругую составляющие.

Процесс контактной усталости отличается признаками, характерными для любого вида усталости (образование и постепенное развитие трещин, наличие в ряде случаев физического предела усталости, влияние концентрации напряжений, зависимость долговечности от нагрузки) и некоторыми индивидуальными. К ним относятся специфическое напряженное состояние при контактном нагружении, значительная пластическая деформация поверхностного слоя, явления трения и износа, протекающие параллельно с контактной усталостью, расклинивающая роль смазки, попадающей в трещины, а также некоторая условность критерия разрушения, связанная с тем, что контактно-усталостные выкрашивания в отличие от обычных усталостных разрушений приводят не к внезапным,- а к постепенным отказам.

В основе механизма этого вида изнашивания лежит многократная деформация поверхностного слоя, вызывающая постепенное нарастание наклепа, охрупчивания и последующее отделение частиц износа. На поверхностях соударения наблюдается повышение твердости в результате наклепа и упрочнение в результате превращения остаточного аустенита в мартенсит. В этом виде изнашивания велика роль краевого эффекта. Периферийные участки деталей, подверженные удару, начинают изнашиваться раньше и главным образом путем выкрашивания, хорошо различимого при осмотре.

По контуру лунок могут быть видны следы пластической деформации металла и связанное с этим дробление структурных составляющих (рис. 30). В данном случае рассматривается качественная картина рельефа изнашивания сталей высокой твердости. В рельефе изнашивания превалирует явно выраженная пластическая деформация поверхностного слоя. С увеличением содержания углерода в стали, а следовательно, ее твердости, после закалки глубина лунок уменьшается. Так, при сравнении рельефа сталей 20 и У10 установлено, что размеры лунок в стали У10 значительно меньше, чем в стали 20. Можно полагать, что глубина лунок предопределяет признаки хрупкого выкрашивания (рис. 31) или образование бугристой поверхности, не имеющей лунок. Это подтверждает предположение о том, что в сталях разной твердости и разного состава процесс формирования и отделения продуктов изнашивания идет по-разному.

Пластическая деформация поверхностного слоя сопровождается увеличением числа дефектов и искажением кристаллической решетки, изменением субструктуры и микроструктуры металла поверхностного слоя. В металле поверхностного слоя резко возрастает количество дислокаций, вакансий и других несовершенств кристаллической решетки, повышая его напряженность. Взаимодействие полей напряжений дислокаций между собой и с другими дефектами решетки затрудняет движение дислокаций, сопротивление пластической деформации возрастает, металл упрочняется (наклеп, деформационное или механическое упрочнение). Число дефектов в кристаллической решетке поверхностного слоя зависит от степени пластической деформации. Степень деформации, а следовательно, и число дефектов в решетке по глубине поверхностного слоя переменные, они уменьшаются с его глубиной.

Упруго-пластическая деформация поверхностного слоя в процессе механической обработки вызывает изменение структурно-чувствительных физико-механических и химических свойств в металле поверхностного слоя по сравнению с исходным его состоянием. В деформированном поверхностном слое возрастают все характеристики сопротивления деформированию: пределы упругости, текучести, прочности, усталости. Изменяются характеристики прочности при длительном статическом и циклическом нагружении в условиях высоких температур. Снижаются характеристики пластичности: относительное удлинение и сужение, повышается хрупкость (уменьшается ударная вязкость), твердость, внутреннее трение, уменьшается плотность. Металл в результате пластической деформации упрочняется.

При механической обработке деталей пластическая деформация поверхностного слоя металла сопровождается увеличением плотности дислокаций, концентрацией вакансий и других дефектов кристаллической решетки. Плотность дислокаций зависит непосредственно от степени деформации.




Рекомендуем ознакомиться:
Деформации контролируется
Деформации кручением
Деформации микронеровностей
Деформации накопленная
Деформации непосредственно
Дальнейшего уточнения
Деформации образуются
Деформации оказывают
Деформации определяется
Деформации основания
Деформации отсутствуют
Деформации пластичности
Деформации полностью
Деформации поскольку
Деформации поверхностей
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки