Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Деформаций необходимо



ПРОДОЛЬНО-ПОПЕРЕЧНЫЙ ИЗГИБ — изгиб стержня, обусловл. одноврем. действием продольных и поперечных сил, при к-ром нельзя пренебрегать влиянием искривления стержня на значение изгибающих моментов от продольных сил. В области упругих деформаций напряжения и деформации при П.-п. и. линейно зависят от поперечных сил и нелинейно — от продольных.

Напряжения II рода уравновешиваются в пределах отдельных зерен металла или их частей (блоки мозаичной структуры, пачки скольжения) и возникают, в частности, в процессе образования соответствующих структурных единиц и стеснения их деформаций.

Замок елочного типа. Для лопаток газовых турбин (рис. 9.17) такой замок имеет основное применение. Профиль зубцов замка аналогичен профилю упорной резьбы, число контактирующих зубьев в соединении от 2 до б. Замки в турбинах работают в сложных силовых и температурных условиях. Центробежные и газовые силы вызывают достаточно высокие осевые номинальные напряжения во впадинах под первой парой контактирующих зубьев (~ 100—180 МПа). При этих напряжениях и высокой температуре (до 700° С) уже в начальный момент времени в зонах концентрации напряжений появляются упругопла-стические деформации, а со временем развиваются деформации ползучести. Эти ответственные соединения разрушаются обычно в пазах хвостовиков и диска—зонах концентрации напряжений и деформаций.

1. Изучение параметров очага деформации (геометрия, кинематика, захват полосы, распределение упругих и пластических деформаций, напряжения, пружинение). Эти работы проводились с использованием аналитических методов теорий упругости и пластичности и различных экспериментальных способов исследования (методы сеток, кернов, тензометриро-вания, твердости и т. д.) [10, 16, 21, 23].

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ, НАПРЯЖЕНИЯ

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ, НАПРЯЖЕНИЯ

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ, НАПРЯЖЕНИЯ

59С ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ. НАПРЯЖЕНИЯ

ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ. НАПРЯЖЕНИЯ

614 ЭКСПЕРИМЕНТАЛЬНОЕ ОПРЕДЕЛЕНИЕ ДЕФОРМАЦИЙ. НАПРЯЖЕНИЯ^

Заметим, что первый член правой части зависимости (8.2) отличается от первого выражения (6.14) лишь заменой постоянной В* функцией В* (/), второй же член представляет собой производную по времени от упругих деформаций. Напряжения в теле хвостовика лопатки и выступа диска определяются формулами (3.8) и (3.15), ибо функциональная зависимость этих напряжений от усилий Pt не меняется в различных стадиях деформации.

Особый интерес представляют вопросы, связанные с одтимальным проектированием, когда учитывается вероятностный характер работы конструкции [13, 26, 30, 46, 47], В этом случае одной из важнейших для проектировщика характеристик является надежность конструкции. С напряжения и деформации, возникающие в конструкции при различных внешних воздействиях. Но инженерный расчет на этом не заканчивается. Результатом инженерного расчета должен быть ответ на вопрос о том, сможет ли конструкция достаточно надежно служить в течение срока эксплуатации. Знание значений напряжений и деформаций необходимо в конечном итоге лишь для того, чтобы вынести суждение о надежности и долговечности конструкции. Поэтому возникает"задача: так спроектировать конструкцию, чтобы во всех сечениях надежность была заданной, а масса конструкции при этом минимально возможной.

Особенность определения деформаций в процессе сварки образцов или конструкций — необходимость проведения измерений в высокотемпературных областях.

Из формулы (11.10) следует, что для определения упругих и пластических деформаций, т. е. собственных деформаций, необходимо знать не только наблюдаемые деформации е„, но и свободные температурные деформации есв. Поэтому в процессе сварки наряду с регистрацией наблюдаемой деформации на базе измерения предусматривается определение термического цикла на этой же базе (см. рис. 11.7, а). Далее воспроизведением термического цикла на образце из исследуемого металла снимают дилатограмму (см. п. 11.2), по которой определяют свободную температурную деформацию есв Вычитая значения есв из значений е„ для соответствующих температур, получаем значения собственных деформаций.

В общем случае определения компонентов деформаций в процессе сварки для плоского напряженного состояния необходимо проводить измерения на трех базах: расположенных вдоль шва — е*и(0> под углом 45° к направлению сварки — ец,(/) и под углом 135° — Е2„(0- Одновременно записывают термический цикл T(t) (см. рис. 11.7,6),

Расчет редукторов основан на формулах, приведенных в курсе «Детали машин», и производится в соответствии с Правилами Регистра [31]. При выборе допускаемых напряжений и деформаций необходимо иметь в виду, что в штормовую погоду вследствие колебаний частоты вращения винта крутящий момент может возрастать на шестерне высокого давления на 25 %, а на шестерне низкого давления на 80 %. Резкие изменения направления вращений при маневрировании усиливают крутящий момент на шестернях примерно в 1,75—2 раза по сравнению с номинальным значением [26]. Помимо расчета редуктора на режим переднего хода производят проверочный расчет на режим заднего хода. Это вызвано тем обстоятельством, что на режиме заднего хода вся мощность передается через шестерни быстроходной и тихоходной пары от ТНД к гребному валу, в резуль-

Хотя приведенный анализ является предварительным, исходные характеристики все же были определены экспериментально. Анализ совместности деформаций необходимо провести несмотря

Так как поверхности прочности описываются кусочно линейными функциями, для существования взаимно однозначного соответствия между этими поверхностями в пространствах напряжений и деформаций необходимо наложить дополнительные ограничения. Те ограничения, которым необходимо подчинить зависимости (29), усматриваются из рис. 5,6, на котором функция (29а) построена для двух различных значений отношения Si\/S\2. Можно заметить, что зависимость, соответствующая отношению S*n/S*2, не является допустимой, поскольку точка 5* пересечения графика данной функции с осью ординат лежит выше точки — Х'2, и, следовательно, разрушающая деформация сжатия в направлении оси 2, появляющаяся вследствие эффекта Пуассона при действии напряжения в направлении оси /, будет меньше предела прочности по деформациям при чистом сжатии в направлении оси 2. Иначе говоря, при чистом сжатии никогда не может быть достигнуто напряжение Х2, а это противоречит уравнению (28г), которое утверждает, что параметр Х2 является экспериментально измеряемой величиной. Для того чтобы избежать указанного противоречия, необходимо потребовать, чтобы точка пересечения 02 с осью 02 всегда была расположена не выше точки — Х2, т. е. чтобы

Распространенным является построение зависимости пластической деформации от числа циклов нагружения до разрушения (появление макротрещины). При этом в связи с выраженной по-цикловой кинетикой напряжений и деформаций необходимо рассмотреть, какие значения пластических деформаций можно использовать для интерпретации условий длительного циклического разрушения.

Для расчетной реализации деформационно-кинетических критериев длительного малоциклового разрушения, помимо характеристик предельных деформаций, необходимо знать изменение необратимой и односторонне накопленной деформации по числу циклов и во времени. При этом специфика исследования деформационных свойств при высоких температурах связана с возможным влиянием реологических характеристик и в соответствии с этим со значением, которое приобретают скорость и время циклического деформирования, наличие или отсутствие длительных высокотемпературных выдержек под напряжением и без, характерных для условий работы высоконагруженных элементов конструкций.

Для анализа полей упругопластических деформаций необходимо описание зависимости между деформацией и напряжением, а в общем случае между их тензорами с учетом температурно-вре-менных влияний. Это осуществляется на основе феноменологического анализа опытных данных, получаемых в надлежащем диапазоне условий деформирования и нагрева, а также на основе физико-механических и структурных моделей тела, описывающих его упруго-вязко-пластическое деформирование в том или ином диапазоне историй натружения. Анализ экспериментальных данных позволил предложить [27] углубление более ранних концепций Мазинга. Ряд выражений, характеризующих свойства диаграммы циклического деформирования в зависимости от формм цикла (длительности выдержки), накопленного числа циклов и параметров диаграммы растяжения при статическом нагружении, получен на основе опыта [30—34]. Эти свойства свидетельствуют о подобии формы диаграмм статического и циклического деформирования, позволяющем выразить амплитуду циклической пластической деформации (ширину петли) формулой

Для расчетной реализации деформационно-кинетических критериев разрушения помимо характеристик предельных деформаций необходимо знать изменение необратимой и односторонне накопленной деформаций по числу циклов и во времени. Изучение сопротивления циклическому деформированию при нормальных и умеренных повышенных температурах проведено достаточно подробно [17, 18] и не требует специального рассмотрения. С другой стороны, сопротивление циклической ползучести, развивающейся в условиях высоких температур, изучено недостаточно, и можно отметить лишь несколько работ в этой области [19—21].




Рекомендуем ознакомиться:
Деформация происходит
Деформация растяжением
Деформация составляет
Деформация вызванная
Деформация увеличивается
Деформацией ползучести
Деформации аналогично
Деформации циклической
Деформации дислокации
Деформации формоизменения
Дальнейшего углубления
Деформации изменение
Деформации конструкций
Деформации кристаллической
Деформации материалов
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки