Вывоз мусора: musor.com.ru
Главная | Контакты: Факс: 8 (495) 911-69-65 |

Дефектоскопы ультразвуковые



Ультразвуковые дефектоскопы предназначены для излучения УЗ-колебаний; приема эхо-сигналов; установления положения и размеров дефектов. Аппаратура УЗ-контроля включает в себя пьезопреобразователь, электронный блок и вспомогательные устройства.

Широкое распространение получили переносные и передвижные (менее мощные) дефектоскопы. Как правило, они представляют собой источники переменного, постоянного (однополупериодного выпрямленного) и реже - импульсного тока. Иногда один дефектоскоп позволяет работать с двумя видами тока. Передвижные и переносные универсальные дефектоскопы предназначены для намагничивания и контроля деталей в условиях, когда невозможно применять стационарные дефектоскопы, например, при намагничивании крупногабаритной детали по частям, в случае работ в полевых условиях и т.п.

ВТД с накладными преобразователями используют как для автоматического, так и для ручного контроля. Дтш контроля линейно-прогаженных объектов круглого сечения (прутки, трубы) применяют сканирующие дефектоскопы с вращающимися вокруг объекта накладными ВТП. Сканирующий дефектоскоп состоит из сканирующего механизма с блоком ВТП и электронного блока. При осевом перемещении объекта контроля блок ВТП описывает винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения вихре-токовых преобразователей, их числом и шириной зоны контроля каждого из них. Имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канале и служит коэффициентом передачи основного измерительного канала. Таким образом сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет выявлять дефекты при увеличении зазора до 2 мм. Сканирующие дефектоскопы предназначены для выявления поверхностных дефектов в изделиях из ферромагнитных и слабомагнитных сталей, а также из цветных металлов и сплавов. Дефектоскоп ВМД-ЗОН с накладными вращающимися магнитными и вихретоковыми преобразователями применяется для контроля труб нефтяного и другого сортамента диаметром 42 - 520 мм (рисунок 3.4.16). Поля рассеяния в зоне дефекта, создаваемые за счет постоянной

Ультразвуковые дефектоскопы предназначены для излучения ультразвуковых колебаний, приема эхо-сигналов, установления положения и размеров дефектов. Простейшая структурная схема эходефектоскопа изображена на рис. 6.22, о. Здесь генератор 1 возбуждает короткие электрические импульсы и подает их на излучатель 2, который работает как пьезопреобразователь и преобразует данные импульсы в ультразвуковые колебания (УЗК). УЗК распространяются в объект контроля (ОК) 3, отражаются от дефекта и противоположной стороны ОК, принимаются приемником 4 (излучатель и приемник может быть одним и тем же элементом при совмещенной схеме пьезопреобразовате-ля). Приемник 4 превращает УЗК в электрические сигналы и подает их на усилитель 5, а затем на вертикально отклоняющие пластины электронно-лучевой трубки, на которой формируются пики импульсов!, II, III (верхняя часть рисунка), характеризующие амплитуду эхо-сигналов. Одновременно с запуском генератора импульсов 1 (или с некоторой заданной задержкой во времени) начинает работать генератор развертки 7. Правильную временную последовательность их включения и работы (а также правильную последовательность работы других узлов дефектоскопа, не показанных на рисунке) обеспечивает синхронизатор 6. Синхронизатор приводит в действие генератор развертки 7. Сигнал, поступающий на генератор развертки 7, направляется на горизонтально-отклоняющие пластины электронно-лучевой трубки. При этом на электронно-лучевой трубке появляется горизонтальная линия (линия развертки дефектоскопа), расстояние между пиками пропорционально пути импульса от излучателя до отражателя и обратно. Таким образом, развертка позволяет различать по времени прихода сигналы от различных отражателей ультразвука (от дефекта II, донный III) и их отклонение от зондирующего I.

Широкое распространение получили переносные и передвижные (менее мощные) дефектоскопы. Как правило, они представляют собой источники переменного, постоянного (однополупериодного выпрямленного) и реже - импульсного тока. Иногда один дефектоскоп позволяет работать с двумя видами тока. Передвижные и переносные универсальные дефектоскопы предназначены для намагничивания и контроля деталей в условиях, когда невозможно применять стационарные дефектоскопы, например, при намагничивании крупногабаритной детали по частям, в случае работ в полевых условиях и т.п.

ВТД с накладными преобразователями используют как для автоматического, так и для ручного контроля. Дпя контроля линейно-протяженных объектов круглого сечения (прутки, трубы) применяют сканирующие дефектоскопы с вращающимися вокруг объекта накладными ВТП. Сканирующий дефектоскоп состоит из сканирующего механизма с блоком ВТП и электронного блока. При осевом перемещении объекта контроля блок В'ГП описывает винтовую линию вокруг его поверхности. Скорость перемещения объекта определяется скоростью вращения вихре-токовых преобразователей, их числом и шириной зоны контроля каждого из них. Имеется дополнительный канал измерения расстояния между преобразователем и поверхностью детали. Сигнал, полученный одной из измерительных обмоток и несущий информацию, в основном о величине зазора, обрабатывается в этом канапе и служит коэффициентом передачи основного измерительного канала. Таким образом сохраняется неизменной чувствительность дефектоскопа при изменениях зазора, что позволяет выявлять дефекты при увеличении зазора до 2 мм. Сканирующие дефектоскопы предназначены для выявления поверхностных дефектов в изделиях из ферромагнитных и слабомагнитных сталей, а также из цветных металлов и сплавов. Дефектоскоп ВМД-ЗОН с накладными вращающимися магнитными и вихретоковыми преобразователями применяется для контроля труб нефтяного и другого сортамента диаметром 42 - 520 мм (рисунок 3.4.16). Поля рассеяния в зоне дефекта, создаваемые за счет постоянной

Капиллярный дефектоскоп — это совокупность приборов капиллярного неразрушающего контроля, вспомогательных средств и образцов для испытаний, которыми с помощью набора Дефектоскопических материалов осуществляют технологический процесс контроля. Капиллярные дефектоскопы (далее дефектоскопы) предназначены для выявления невидимых или слабо видимых глазом поверхностных дефектов (трещин, пористости, непроваров, других несплошностей различного происхождения) в металлических и неметаллических материалах, полуфабрикатах и изделиях любой геометрической формы.

Радиометрические дефектоскопы предназначены для работы в составе системы радиометрического контроля изделий, в которую кроме него входят гамма-дефектоскоп РИД-41 с источником излучения 60Со и механизм перемещения контролируемого изделия.

Передвижные и переносные универсальные дефектоскопы предназначены для намагничивания и контроля деталей в условиях, когда невозможно

Ультразвуковые дефектоскопы предназначены для излучения ультразвуковых колебаний, приема эхо-сигналов, установления положения и размеров дефектов. Простейшая структурная схема эходефектоскопа изображена на рис. 6.22, о. Здесь генератор I возбуждает короткие электрические импульсы и подает их на излучатель 2, который работает как пьезопреобразователь и преобразует данные импульсы в ультразвуковые колебания (УЗК). УЗК распространяются в объект контроля (ОК) 3, отражаются от дефекта и противоположной стороны ОК, принимаются приемником 4 (излучатель и приемник может быть одним и тем же элементом при совмещенной схеме пьезопреобразовате-ля). Приемник 4 превращает УЗК в электрические сигналы и подает их на усилитель 5, а затем на вертикально отклоняющие пластины электронно-лучевой трубки, на которой формируются пики импульсов I, И, III (верхняя часть рисунка), характеризующие амплитуду эхо-сигналов. Одновременно с запуском генератора импульсов 1 (или с некоторой заданной задержкой во времени) начинает работать генератор развертки 7. Правильную временную последовательность их включения и работы (а также правильную последовательность работы других узлов дефектоскопа, не показанных на рисунке) обеспечивает синхронизатор 6. Синхронизатор приводит в действие генератор развертки 7. Сигнал, поступающий на генератор развертки 7, направляется на горизонтально-отклоняющие пластины электронно-лучевой трубки. При этом на электронно-лучевой трубке появляется горизонтальная линия (линия развертки дефектоскопа), расстояние между пиками пропорционально пути импульса от излучателя до отражателя и обратно. Таким образом, развертка позволяет различать по времени прихода сигналы от различных отражателей ультразвука (от дефекта II, донный III) и их отклонение от зондирующего I.

В турбостроении широко применяют дефектоскопы УДМ-1М и УЗД-7Н, работающие на принципе импульсных ультразвуковых колебаний. Дефектоскопы предназначены для выявления в деталях таких дефектов, как трещины, пустоты, рыхлости, шлаковые включения, зоны ликвации, флокены и т. д. Этими дефектоскопами можно обнаруживать внутренние дефекты в поковках, прокате и сварных швах. Глубина залегания дефекта и толщина изделия определяются глубиномером. Максимальная глубина прозвучивания для стали при пользовании прямым искателем доходит до 2,5 м, призматическим искателем — до 1,2 м, а минимальная глубина прозвучивания при применении специальных призматических искателей равна 1—2 мм. При замере толщины металла свыше 100 мм погрешность составляет не более 2,5%. Дефектоскоп очень чувствителен. На глубине 1 м дефектоскоп обнаруживает дефект площадью 3—4 мм2, а на глубине 300 мм — до 1—2мм.

18. ГОСТ 23667. Контроль неразрушающий. Дефектоскопы ультразвуковые. Методы измерения основных параметров.

Контроль неразрушающий. Дефектоскопы ультразвуковые. Общие технические требования

Контроль неразрушающйй. Дефектоскопы ультразвуковые. Методы измерения основных параметров

— ультразвуковой — Основные параметры эхо-метода 234 — 237 — Оборудование см. по названиям, например Эхо-дефектоскопы ультразвуковые Контроль акустический многослойных конструкций — Классификация методов 289 — Основные параметры 292, 293 — Применение 292, 293— Свойства точечного контакта 291, 294

— Применение 319 — 321 Эхо-дефектоскопы ультразвуковые — Измерение эквивалентной площади дефектов и амплитуд эхо-сигналов 230—233

При методе отражений используют акустические дефектоскопы, работающие в диапазоне частот 0,2 ... 30 МГц, т. е. ультразвуковые дефектоскопы.

4.2. УЛЬТРАЗВУКОВЫЕ ДЕФЕКТОСКОПЫ

Ультразвуковые дефектоскопы обычно работают в импульсном режиме, значительно реже — в непрерывном режиме излучения упругих колебаний.

В СССР четкая классификация импульсных ультразвуковых дефектоскопов определена ГОСТ 23049—84. В зависимости от области применения ультразвуковые дефектоскопы (УД) подразделяют на две группы: общего назначения — УД и специализированные — УДС, а в зависимости от функционального назначения— на четыре группы (табл. 4.1). Условное обозначение дефектоскопа состоит из букв УД (или УДС), номера группы и порядкового номера модели, а также буквы М с номером модернизации и номера исполнения по устойчивости к воздействию внешней среды.

В практике неразрушающего контроля наиболее широко используют ручные импульсные ультразвуковые дефектоскопы 2-й и 3-й групп общего или специального назначения. Общим для этих дефектоскопов является наличие электронно-лучевого и звукового индикаторов, электронного глубиномера для определения координат залегания отражающей поверхности, аттенюатора для измерения отношения амплитуд сиг налов в децибелах.

света 33 Герметики 211 Гетинакс 212 Датчики 32, 167, 154 Дефектоскопы ультразвуковые 58 Диаграммы




Рекомендуем ознакомиться:
Деформация напряжение
Деформация отдельных
Деформация постепенно
Деформация поверхностного
Деформация пропорциональна
Деформация разрушение
Деформация температура
Деформация возникающая
Деформация значительно
Деформацией растяжения
Дальнейшего технического
Деформации деформация
Деформации достигает
Деформации идеальных
Деформации используют
Меню:
Главная страница Термины
Популярное:
Где используются арматурные каркасы Суперпроект Sukhoi Superjet Что такое экология переработки нефти Особенности гидроабразивной резки твердых материалов Какие существуют горные машины Как появился КамАЗ Трактор Кировец К 700 Машиностроение - лидер промышленности Паровые котлы - рабочие лошадки тяжелой промышленности Редкоземельные металлы Какие стройматериалы производят из отходов промышленности Как осуществляется производство сварной сетки